

SCHOOL OF ENGINEERING

B. TECH. (MECHANICAL ENGINEERING)

SYLLABUS BOOK

AY 2024-25

INSTITUTE VISION

To emerge as an Institute of Excellence by imparting value-based education aided with Research, Innovation and Entrepreneurial skills.

	INSTITUTE MISSION
1.	To impart the holistic engineering education of highest quality & prepare socially responsible
	professionals with entrepreneurial skills.
2.	To prepare value-aided engineering professionals to meet up global industry requirements by
	imparting cutting edge professional education.
3.	To inculcate the attitude of research and innovation among the stake holders through
	experiential and project-based teaching-learning pedagogy.
4.	To acquire global talent pool by providing world class amenities for teaching, learning &
	research.

Graduates will demonstrate ability to:

PEO No	PROGRAMME EUCATIONAL OBJECTIVES
PEO 1	Solve real-world engineering problems, design and develop innovative and cost-effective
	solutions exhibiting engineering skills/fundamentals to cater needs of society.
PEO 2	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting
	comprehensive competitiveness.
PEO 3	Exhibit professional ethics & values, effective communication, teamwork, multidisciplinary
	approach, and ability to relate engineering issues to broader societal framework.

PO No	PROGRAMME OUTCOMES
PO 1	Engineering knowledge:
	Apply knowledge of engineering fundamentals, science, mathematics & engineering
	specialization for the solution of complex engineering problems.
PO 2	Problem analysis:
	Identify, formulate and analyze complex engineering problems leading to substantial
	conclusions using basic principles of mathematics, science and engineering.
PO 3	Design/development of solutions:
	Develop solutions for complex engineering problems and design system components or
	processes meeting specified needs having due consideration for the safety and societal &
	environmental considerations.
PO 4	Conduct investigations of complex problems:
	Use research-based knowledge & methods like design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid & viable conclusions.
PO 5	Modern tool usage:
	Create, select, and apply appropriate techniques, resources, and modern engineering and IT
	tools for prediction and modeling of complex engineering activities with an understanding of
	the limitations.
PO 6	The engineer and society:
	Apply cognitive learning by the contextual knowledge to assess societal, health, safety, legal
	and cultural issues and following responsibilities relevant to the professional engineering
	practice.
PO 7	Environment and sustainability:
	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge & skill needed for sustainable
DO 0	Veluce & Ethice
PU 8	values & Ethics:
	Apply basic moral values & ethical principles and pleuge to professional ethics/norms and
PO Q	Individual and team work:
105	Function effectively as an individual/as a team member or as a leader in diverse teams and
	in multidisciplinary settings
PO 10	Communication:
1010	Communicate effectively on complex engineering activities with the engineering community
	and with society at large, such as, being able to comprehend and write effective reports and
	design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance:
	Demonstrate knowledge and understanding of the engineering and management principles
	and apply these to one's own work, as a member and leader in a team, to manage projects in
	multidisciplinary environments.
PO 12	Life-long learning:
	Recognize the need, do necessary preparation and ability to engage in independent and life-
	long learning in the broadest context of technological change.

PSO No	PROGRAMME SPECIFIC OUTCOMES (PSO)							
	MECHANICAL ENGINEERING							
PSO 1	Analyse, interpret and provide solutions to real life Mechanical Engineering problems.							
PSO 2	Develop an attitude to accept global challenges and apply Mechanical Engineering							
	knowledge for solving problems related to design, production, thermal and							
	interdisciplinary fields.							
PSO 3	Attain excellence in using managerial tools and techniques for effective and efficient							
	manufacturing and in developing research & leadership skills with ethical and							
	environmental practices.							

Credit Guidelines (General)									
Component	Hour/Week	Credit	Total Hours/Semester						
Theory	1	1	15						
Practical	2	1	30						
Tutorial	1	1	15						
Note: In specific cases; extra credits can be granted for specific/important subjects.									

CO-PO Mapping Guidelines										
Mapping Level	% age Mapping	Indicator								
0 / -	0	No Mapping								
1	0-33	Low Level (Slightly Mapped)								
2	33-66	Medium Level (Moderately Mapped)								
3	>66	High Level (Strongly Mapped)								

Syllabus Book

B. Tech. (Mechanical Engineering)

P P Savani University

School of Engineering

Effective From: 2024-25 Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-46
2	Syllabi of Second Year	47-91

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR FIRST YEAR B.TECH. PROGRAMME AY: 2024-25

Sem	Course	nurse		Teaching Scheme					Examination Scheme						
Jem	Course Code	Course Title	onered by		Contact Hours			Credit	Theory		Practical		Tutorial		Total
				Theory	Practical	Tutorial	Total	cicuit	CE	ESE	CE	ESE	CE	ESE	Total
	SESH1110	Calculus	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SESH1120	Linear Algebra	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SEME1110	Hardware Workshop	ME	0	4	0	4	4	0	0	100	0	0	0	100
	SECE1110	Software Workshop	CE	0	4	0	4	2	0	0	100	0	0	0	100
	SEIT1110	Cyberspace Awareness	IT	2	0	0	2	2	40	60	0	0	0	0	100
	SEIT1120	Competitive Quantitative Aptitude	IT	2	0	0	2	2	40	60	0	0	0	0	100
1 0 0 2	SECE1120	Joy of Programming	CE	3	2	0	5	4	40	60	40	60	0	0	200
1 UK 2	SESH1130	Conceptual Experimental Physics	SH	3	2	0	5	4	40	60	40	60	0	0	200
	SECH1110	Fundamental Chemistry & Environmental Science	СН	3	2	0	5	4	40	60	40	60	0	0	200
	SEME1120	Fundamentals of Technical Drawing	ME	0	4	0	4	4	0	0	40	60	0	0	100
	SECV1110	Core Engineering Concepts	CV	3	2	0	5	4	40	60	40	60	0	0	200
	CFLS2130	Intermediate Communicative English	CFLS	2	2	0	4	3	100	00	100	0	0	0	200
	CLSC2070	Essentials of Entrepreneurship	CFLS/SLM	2	0	0	2	2	100	0	0	0	0	0	100
						Total	52	45							2000

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR FIRST YEAR B.TECH. PROGRAMME AY: 2024-25

				Teaching Scheme							Examination Scheme					
Sem	Course	Course Title	Offere d		Contact Hours					eory	Practical		Tutorial		Total	
	Code		By	Theory	Practical	Tutori al	Total		CE	ESE	CE	ESE	CE	ESE		
	SESH1110	Calculus	SH	3	0	2	5	5	40	60	0	0	100	0	200	
	SEME111 0	Hardware Workshop	ME	0	4	0	4	4	0	0	100	0	0	0	100	
	SEIT1110	Cyberspace Awareness	IT	2	0	0	2	2	40	60	0	0	0	0	100	
Group	SESH1130	Conceptual Experimental Physics	SH	3	2	0	5	4	40	60	40	60	0	0	200	
1	SEME112 0	Fundamentals of Technical Drawing	ME	0	4	0	4	4	0	0	40	60	0	0	100	
	SECE1120	Joy of Programming	CE	3	2	0	5	4	40	60	40	60	0	0	200	
	CFLS2130	Intermediate Communicative English	CFLS	2	2	0	4	3	100	0	100	0	0	0	200	
				Total	29	26							1100			
	SESH1120	Linear Algebra	SH	3	0	2	5	5	40	60	0	0	100	0	200	
	SECE1110	Software Workshop	CE	0	4	0	4	2	0	0	100	0	0	0	100	
	SEIT1120	Competitive Quantitative Aptitude	IT	2	0	0	2	2	40	60	0	0	0	0	100	
Group 2	SECH1110	Fundamental Chemistry & Environmental Science	СН	3	2	0	5	4	40	60	40	60	0	0	200	
	SECV1110	Core Engineering Concepts	CV	3	2	0	5	4	40	60	40	60	0	0	200	
	CLSC2070	Essentials of Entrepreneurship	CFLS/ SLM	2	0	0	2	2	100	0	0	0	0	0	100	
						Total	23	19							900	

Department of Science and Humanities

Course Code: SESH1110 Course Name: Calculus Prerequisite Course/s: Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					E	xaminat	ion Sche	me (Mar	·ks)					
Theory	Practical	Tutorial	Credit	Theory Pra		Theory		Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE					
03	-	02	05	40	60	-	-	100	-	200				

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- summarize concept of calculus to enhance ability of analysing mathematical problems.
- acquire knowledge and ability to work with differentiation and integration for applications of mathematical techniques in engineering.
- develop the tool of convergence or divergence of any infinite series and power series for learning advanced Engineering Mathematics.
- acquire knowledge of partial differentiation and ability to work with applications to advanced Engineering Mathematics.
- application of concavity of graph and find out points of inflection.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	09	20						
2.	Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absolute and Conditional Convergence.	09	20						
3.	Sequence and Series-II Power series, Taylor and Maclaurin series, Indeterminate forms and L'Hospital's Rule.	05	10						
	Section II								
Module No.	Content	Hours	Weightage in %						
1.	Partial Derivatives	11	30						

	Function of several variables, Partial differentiation, Applications,		
	Chain rule, Linear approximations, Maxima and Minima, Euler's		
	theorem, Lagrange multiplier.		
	Curve tracing		
2.	Tracing of Cartesian Curves, Polar Coordinates, Polar and Parametric	11	20
	Form of Standard Curves, Areas and Length in Polar co-ordinates		
	TOTAL	45	100

List of Tutorials:

Sr.	Name of Tutorial	Hours
No.	Name of Futorial	nours
1.	Calculus-1	04
2.	Calculus-2	04
3.	Calculus-3	02
4.	Sequence and Series-1	04
5.	Sequence and Series-2	02
6.	Sequence and Series-3	02
7.	Partial Derivatives-1	04
8.	Partial Derivatives-2	02
9.	Curve tracing-1	04
10.	Curve tracing-2	02
	TOTAL	30

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel	Pearson
	Hass	
Elementary linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book:

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley and Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama Verma	S. Chand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 50 marks
- Continuous Evaluation consists of self-performance assignment to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

SESH1110	CALCULUS
CO 1	Recall the concepts of limit, continuity and differentiability for analysing
	mathematical problems.
CO 2	Analyze the series for its convergence and divergence to solve real world problems.
CO 3	Evaluate various limit problems using L' Hospital's rule.
CO 4	Identify the ordinary differentials and partial differentials and solve the maximum
	and minimum value of function.
CO 5	Construct the graphs for function with intervals and identify more application for
	function.

Mapping of CO with PO

SESH1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	3	1	1								1
CO 2	3	2	1									1
CO 3	2	2	1									
CO 4	2	2	1	1								1
CO 5	2	2	1									1

Mapping of CO with PSO

SESH1110	PSO1	PSO2	PSO3
CO 1	3		
CO 2	1	1	
CO 3	1	2	
CO 4	3	2	
CO 5	1	1	

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Calculus	1, 2, 3, 4, 5
2	Sequence and Series – I	1, 2, 3, 4, 6
3	Sequence and Series – II	1, 2, 3, 4, 6
4	Partial Derivatives	1, 2, 3, 4, 5
5	Curve tracing	1, 2, 3, 4, 5, 6

Department of Science and Humanities

Course Code: SESH1120

Course Name: Linear Algebra

Prerequisite Course/s: -- Algebra, Geometry, Trigonometry & Pre-Calculus till 12th Standard level

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					E	xaminat	ion Sche	me (Mar	·ks)	
Theory	Practical	Tutorial	Credit	The	eory	Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
03	-	02	05	40	60	-	-	100	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Analyses and solve system of linear equations and understand characteristics of Matrices.
- Learn about and work with vector space, linear transformation and inner product space.
- Apply concepts of linear algebra for solving science and engineering problems.
- Introduce the concept of improper integral and Beta-Gamma Function.

	Section I							
Module	Content	Hours	Weightage					
No.			in %					
1.	Matrix Algebra Elementary Row and Column operations, Inverse of matrix, Rank of matrix, System of Linear Equations, Characteristic Equation, Eigen values and Eigen vector, Diagonalization, Cayley Hamilton Theorem.	12	30					
2.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	11	20					
	Section II							
Module	Content	Hours	Weightage					
No.			in %					
1.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps.	09	20					

2.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram- Schmidt process and OR Decomposition, least square decomposition.	08	20
3.	Beta and Gamma function Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (without proof)	05	10
	TOTAL	45	100

List of Tutorial:

Sr. No.	Name of Tutorial	Hours
1.	Matrix Algebra-1	04
2.	Matrix Algebra-2	02
3.	Vector Space-1	04
4.	Vector Space-2	02
5.	Linear Transformation-1	04
6.	Linear Transformation-2	02
7.	Inner Product Space-1	04
8.	Inner Product Space-2	02
9.	Beta and Gamma function-1	04
10.	Beta and Gamma function-2	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Reference Book(s):

Title	Author(s)	Publication
Advanced Engineering Mathematics	E Kreyszig	John Wiley & Sons
A textbook of Engineering Mathematics	N P Bali and Manish Goyal	Laxmi
Higher Engineering Mathematics	B S Grewal	Khanna
Engineering Mathematics for First Year	T Veerarajan	Tata Mc Graw Hill
Engineering Mathematics-1 (Calculus)	H. K. Dass and Dr. Rama Verma	S. Chand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

• Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 50 marks.

- Continuous Evaluation consists of self-performance assignment to 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

	.1	
After the completion of the	course, the following course	outcomes will be able to:
inter the compretion of the	ee ai ee, eiie ieiie iiig ee ai ee	

SESH1120	LINEAR ALGEBRA & CALCULUS					
CO 1	Evaluate linear system using matrices and the knowledge of eigenvalues and					
01	eigenvectors for matrix diagonalization					
CO 2	Determine the basis and dimension of vector spaces and subspaces.					
CO 2	Discuss the matrix representation of a linear transformation given bases of the relevant					
0.5	vector space.					
CO 4	CO 4 Apply vectors, inner products, and linear transformations to real world situations.					
60 F	Classify gamma, beta functions & their relation which is helpful to evaluate some					
CO 5	definite integral arising in various branch of engineering.					

Mapping of CO with PO

SESH1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	3	3	1	1								3
CO 2	3	2	1									2
CO 3	2	2	1									3
CO 4	2	2	1	1								1
CO 5	2	1	1									1

Mapping of CO with PSO

SESH1120	PSO1	PSO2	PSO3
CO 1	3	2	
CO 2	1	1	
CO 3	2	2	
CO 4	2	2	
CO 5			

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Matrix Algebra	1, 2, 3, 4, 5, 6
2	Vector Space	1, 2, 3, 4, 6
3	Linear Transformation	1, 2, 3, 4, 6
4	Inner Product Space	1, 2, 3, 4, 5, 6
5	Beta and Gamma Function	1, 2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME1110 Course Name: Hardware Workshop Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme					Examination Scheme (Marks)					
(Hours/Week)										
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
-	04	-	04	-	-	100	-	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

Course Content:

Sr.	Name of Practical	Hours
No.		
1.	Introduction and Demonstration of Safety Norms. Different Measuring Instruments.	12
	Introduction and Demonstration of Machine Shop. To Perform a Job of Fitting Shop.	
2.	To Perform a Job of Carpentry Shop. Introduction and Demonstration of Plumbing Shop	15
	& Welding Process.	
3.	(I)Identify computer hardware layout and components	08
	(II)Perform assembling and disassembling of PC	
4.	Configure BIOS, disk, network and other hardware management	05
5.	Understanding the electronic components and study of Shouldering and Desoldering of	04
	electronic components on PCB Board.	
6.	Understanding the connection on Breadboard and study of Alternate Flashing LED Lights	06
	using Breadboard.	
7.	Verify the truth table of Logic gates and De morgan's theorem on IC trainer board.	04
8.	Study of Cathode Ray Oscilloscope.	06

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology	S K Hajra Choudhury	Media Promoters & Publishers
A text book in Electrical Technology	B L Theraja	S Chand and Co

Reference Book(s):

Title	Author(s)	Publication
Basic Electronics: A text lab manual	P.B. Zbar, A.P. Malvino, M.A. Miller	Mc-Graw Hill.
Digital Electronics	Subrata Ghoshal	Cengage Learning

Course Evaluation:

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluated out of 10 for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator
- Internal Viva consists of 30 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1110	HARDWARE WORKSHOP
CO 1	Apply the application of mechanical workshop such as fitting, drilling and carpentry.
	Understand various tools of mechanical workshop and understand its applications.
CO 2	Identify and inspect hardware components and interpret latest development of the
	field.
CO 3	Make students capable of analysing and solving the varieties of problems
	coming up in the electrical measurements and also enable the students to design as
	well as trouble shoots the circuits and networks through hands-on mode.
CO 4	Develop skill to build, and troubleshoot digital circuits.

Mapping of CO with PO

SEME1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1	2	1		3	3		3	3	1	3
CO 2	2	1	1	1	2	2			2	2	1	2
CO 3	3	2	2	2	2	2	2	3	2	2	3	3
CO 4	2	3	2	3	3		3	3	1	2	1	2

Mapping of CO with PSO

SEME1110	PSO1	PSO2	PSO3
CO 1	3	1	1
CO 2	1	1	2
CO 3	1	3	3
CO 4	2	2	2

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Practical	Content	RBT
No		Level
1	Introduction and Demonstration of Safety Norms. Different Measuring	1,2,3,4
	Instruments. Introduction and Demonstration of Machine Shop. To Perform a	
	Job of Fitting Shop.	
2	To Perform a Job of Carpentry Shop. Introduction and Demonstration of	1,2,3,4
	Plumbing Shop & Welding Process.	
3	(I)Identify computer hardware layout and components	1,2,3,4
	(II)Perform assembling and disassembling of PC	
4	Configure BIOS, disk, network and other hardware management	1,2,3
5	Understanding the electronic components and study of Shouldering and	1,2,3
	Desoldering of electronic components on PCB Board.	
6	Understanding the connection on Breadboard and study of Alternate Flashing	1,2,3
	LED Lights using Breadboard.	
7	Verify the truth table of Logic gates and De morgan's theorem on IC trainer	1,2,3,4
	board.	
8	Study of Cathode Ray Oscilloscope.	1,2,3

Department of Computer Engineering

Course Code: SECE1110 Course Name: Software Workshop Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatior	Scheme	e (Marks)			
Theory	Practical	Tutorial	Credit	Theory		Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE			
-	04	-	02	-	-	100	-	-	-	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Provide a comprehensive knowledge of overall basic computer software tools and technology.
- Providing hands-on experience related to basic software installation, usage of Operating systems, and various essential software utilities.

Section I					
Module	Content	Weightage			
No.		in %			
1.	Software Fundamentals Introduction to Software, Types of software, Applications of software, Web based software, Understand Software specific requirements, Installation of Software	10			
2.	Operating SystemIntroduction of OS, Functions of Operating System, Types of OS, Installationof Windows and Linux OS, Linux architecture, Role of Device Drivers in OS,Shell scripting, Command structure, and general-purpose utility.	25			
3.	DOS Commands Getting Started with DOS, Introduction to Command Prompt, System Files and Command, creating directories, traversing through directories, deleting directories, Viewing Files within a directory.	15			
	Section II				
Module	Content	Weightage			
No.		in %			
1.	Application SoftwareIntroduction to Application Software, Types of Application Software,Installation of Application Software, Logo Designing, Creating Flowchartsand diagrams, Introduction to Google Apps.	10			

2.	Data Analysis using Application Software Introduction to Spreadsheets, Spreadsheet Functions to Organize Data, Introduction to Filtering, Pivot Tables, and Charts, VlookUp and HlookUp in Spreadsheets.	15
3.	Website Creation Creating a website using Google Sites, Creating Web Pages, Working with Images, Working with Documents on Web Pages. Introduction to WordPress, Installing Web Server and WordPress, Creating Web pages in WordPress.	25
	TOTAL	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Study of Different Software.	02
2.	Installation of any 2 software with required plugins and libraries.	04
3.	Study of Different Operating Systems.	02
4.	Creation of Bootable Pen drive.	02
5.	Installation of Windows OS.	02
6.	Installation of Linux OS using VMWare.	02
7.	Study of Basic commands of Linux/UNIX.	04
8.	Study of Basic commands of DOS.	04
9.	Design logo using Canva.	02
10.	Draw a Flowchart to find maximum of two numbers in either draw.io or	02
	Microsoft Visio or Lucid Chart.	
11.	Study of different Google Apps.	04
12.	Create a Google Doc and Google sheet and share with 2 classmates.	02
13.	Demonstrate working of HlookUp and VlookUp in Excel.	02
14.	Create different types of charts in Excel.	04
15.	Demonstrate Data Analysis in Excel.	04
16.	Create a Google Website with minimum two pages showing your personal	04
	details.	
17.	Demonstrate embedding of a YouTube video and pdf document on a web	04
	page in google site.	
18.	Demonstrate placing Map and hyperlinks on web page in Google Site.	04
19.	Create a WordPress site and create minimum three web pages and menu to	04
	navigate between the pages.	
20.	Demonstrate the use of Accordion in WordPress.	02
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Fundamentals Of Computers, 2nd Edition	Reema Thareja	Oxford University Press
Excel 2019 Bible	Michael Alexander, Richard	Wiley
	Kusleika, John Walkenbach	

Reference Book(s):

Title	Author/s	Publication
UNIX: Concepts and Applications 4th	Sumitabha Das	McGraw Hill Education
Edition		

Web Material Link(s):

- <u>https://sites.google.com/site/willkimbley/google-apps-tutorials</u>
- <u>https://www.cs.upc.edu/~robert/teaching/foninf/doshelp.html</u>
- <u>https://www.javatpoint.com/software-engineering</u>
- <u>https://www.wikihow.com/Create-a-Website-Using-Google-Sites</u>
- <u>https://www.wpbeginner.com/guides/</u>

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 marks per each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during Internal practical Exam.
- Mini Project performance consists of 40 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

SECE1110	Software Workshop
CO 1	Understand the types of computer software with their requirements and how to use
001	as per the need.
CO 2	Install different Operating Systems and learn commands used in the OS.
CO 3	Get familiar with the application software and different applications of application
	software
CO4	Achieve some useful information from data through analysis and represent it with
C04	different views like charts, graphs etc.
CO 5	Learn the designing and development of website to have a global communication.

Mapping of CO with PO

SECE1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	2	2	2	3		1		1	2	2	1
CO 2	3	1	1	1	1		1			1		1
CO 3		1	2	2	3	2	1		2	1	2	3
CO 4	2	1		2	1		1		1	1		
CO 5	1	1	1	2	1	3	1		1	1	2	1

Mapping of CO with PSO

SECE1110	PSO1	PSO2	PSO3
CO 1	1	3	1
CO 2		3	1
CO 3	2		2
CO 4	2		1
CO 5		1	

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Software Fundamentals	1,2
2	Operating System	1,2,3,6
3	Disk Operating System	2,3
4	Application Software	2,3,4,5
5	Data Analysis using Application Software	3,4,5,6
6	Website Creation	2,3,6

Department of Information Technology

Course Code: SEIT1110 Course Name: Cyberspace Awareness Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
02	-	-	02	40	60	-	-	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to,

- understand governance, regulatory, legal, economic, environmental, social, and ethical context of cyber security.
- equip students with the technical knowledge and skills needed to protect and defined against cyber threats.
- help students to protect the one's data, systems, and networks from malicious attacks and cyber threats.

	Section I		
Module	Content	Hours	Weightage
No.			in %
1.	Introduction to Cyber space Cyber space, Cyber Crime and its Types, Overview of Cyber Security, Cyber Attacks in History, Internet Governance, Hacking and its Types, Cracking, Overview of System and Web Vulnerability, OWASP	06	20
2.	Cyber Threats Various Cyber Threats, Malware, Phishing, Password Attacks, DOS attack, Man in the Middle, Drive by download, Malvertising, Rogue Software, Cyber Warfare and its conflicts, Cyber Terrorism, Case studies	09	30
	Section II		
Module	Content	Hours	Weightage
No.			in %
1.	Cyber security Practices Cyber Security Practices and dos and don'ts, Data Privacy and Security, Security Controls, Overview of social media and its security, E-Commerce, Digital payments and its security, Tools and technology	05	15

	for cyber security, Platform to report and combat cyber-crime, Case		
	studies		
	Cyberspace and the Law		
	Cyber Security Regulations, Cyber Law, need for a Comprehensive	06	15
2	Cyber Security Policy, Need for an International convention on Cyber		
۷.	space, Contemporary crime, Roles of International Law, the state and		
	Private Sector in Cyberspace, Cyber Security Standards, The INDIAN		
	Cyberspace, Indian IT Act 2000, Indian IT Act 2008, Case studies		
	Cyber Forensics		
2	Introduction to Cyber Forensics, Handling Preliminary analysis,	04	20
5.	Investigating Investigations, Controlling an Investigation, Legal		
	Policies, Case studies		
	TOTAL	30	100

Text Book(s):

Title	Author/s	Publication
Cybersecurity for Beginners	Raef Meeuwisse	Cyber Simplicity Ltd

Reference Book(s):

Title	Author/s	Publication
Cyber Security	Nina Godbole, Sunit Belapure	Wiley India, New Delhi
The Indian Cyber Law	Suresh T. Vishwanathan;	Bharat Law House New
		Delhi

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After completion of the course, the students will be able to,

SEIT1110	Cyberspace Awareness
CO 1	Understand Concepts of Cyber space.
CO 2	Analyze the Concepts of Cyber Threats.
CO 3	Elaborate the overview of social media and understanding cybercrimes.
CO 4	Identify cyber laws and cyber acts in India.
CO 5	Explore different case studies based on cyber-Forensics.

Mapping of CO with PO

SEIT1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	3	3	3		3	3	3					

CO 2	3	3	3	3	3	3	3	3				
CO 3	3	3	3			2	3	3		3		3
CO 4	3	3		3		3	3	3			3	3
CO 5		3	3	3	3	3		3	3	3	3	3

Mapping of CO with PSO

SEIT1110	PSO1	PSO2	PSO3
CO 1	3	3	
CO 2		3	3
CO 3	3	3	
CO 4			3
CO 5		3	3

Level of Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Cyber space	1
2	Cyber Threats	1,2
3	Cyber security Practices	1,2,3
4	Cyberspace and the Law	1,2
5	Cyber Forensics	1,23

Department of Computer Engineering

Course Code: SEIT1120 Course Name: Competitive Quantitative Aptitude Prerequisite Course(s): ---

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exar	ninatior	Scheme	(Marks)		
Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
02	-	-	02	40	60	-	-	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

• This course is designed to suit the need of the outgoing students and to acquaint them with frequently asked patterns in quantitative aptitude and logical reasoning during various examinations and campus interviews.

	Section I		
Module	Content	Hours	Weightage
No.			in %
1.	Quantitative Ability (Basic Mathematics) Number Systems, LCM and HCF, Decimal Fractions, Simplification, Square Roots and Cube Roots, Average, Problems on Ages, Surds & Indices, Percentages, Problems on Numbers, Quadratic Equations	05	15
2.	Quantitative Ability (Applied & Engineering Mathematics)- Part I Logarithm, Permutation and Combinations, Probability, Profit and Loss, Simple and Compound Interest,	05	35
3.	Quantitative Ability (Applied & Engineering Mathematics) -Part II Time, Speed and Distance, Time & Work, Ratio and Proportion, Mixtures and Allegation	05	20
	Section II		
Module	Content	Hours	Weightage
No.			in %
1.	Data Interpretation Data Interpretation, Tables, Column Graphs, Bar Graphs, Line Charts, Pie Chart, Venn Diagrams1	06	20

2.	Logical Reasoning (Deductive Reasoning) Analogy, Blood Relation, Directional Sense, Number and Letter Series, Coding – Decoding, Calendars, Clocks, Seating Arrangement, Syllogism	06	20
3.	Mensuration & Trigonometry Two-dimensional (2D) and Three-dimensional (3D) Mensuration, Degree and Radian Measures, Trigonometric Ratios, Complementary Angles, Height and Distance, Standard Identities, Area, Inequalities	03	10
		30	

Text Book(s):

Title	Author/s	Publication
Quantitative aptitude for Competitive examination	R S Agarwal	S. Chand
A Modern Approach to Verbal & Non-Verbal Reasoning	R S Agarwal	S. Chand

Reference Book(s):

Title	Author/s	Publication
Analytical and Logical reasoning	Sijwali B S	arihant

Web Material Link(s):

- <u>https://prepinsta.com/</u>
- <u>https://www.indiabix.com/</u>
- <u>https://www.javatpoint.com/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will be able to

SEIT1120	Competitive Quantitative Aptitude					
CO 1	Understand the basic concepts of quantitative ability					
CO 2	Understand the basic concepts of logical reasoning Skills					
CO 3	Acquire satisfactory competency in use of reasoning					
CO4	Solve campus placements aptitude papers covering Quantitative Ability, Logical					
C04	Reasoning Ability					
CO 5	Compete in various competitive exams like CAT, CMAT, GATE, GRE, GATE, UPSC, GPSC					
005	etc					

Mapping of CO with PO

SEIT1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	3	2	2	2	2	2	3		1	3	2	3
CO 2	2	2	3	2	3	2	3		3	3	2	2
CO 3	2	2	2	2	3	2	3		3	1	2	3
CO 4	3	2	3	3	3	2	2		3	3	2	3
CO 5	2	2	2	2	1	3	3		3	2	1	3

Mapping of CO with PSO

SEIT1120	PSO1	PSO2	PSO3
CO 1	3	2	3
CO 2	3	3	2
CO 3	3	3	3
CO 4	3	2	3
CO 5	2	1	2

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Quantitative Ability (Basic Mathematics)	1, 3, 5
2	Quantitative Ability (Applied & Engineering Mathematics)	1, 2, 3, 5
3	Data Interpretation	2, 3, 6
4	Logical Reasoning (Deductive Reasoning)	2, 4, 5
5	Mensuration & Trigonometry	1, 3, 5

Department of Computer Engineering

Course Code: SECE1120 Course Name: Joy of Programming Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)					
Dractical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory Practical Tu	Tutorial	Cleuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
02	-	04	40	60	40	60	-	-	200
ו	g Scheme (1 Practical 02	g Scheme (Hours/Week Practical Tutorial 02 -	g Scheme (Hours/Week) Practical Tutorial Credit 02 - 04	g Scheme (Hours/Week)ExamplePracticalTutorialCreditThe CE02-0440	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	g Scheme (Hours/Week)Examination SchemPracticalTutorialCreditTheoryPractical02-04406040	g Scheme (Hours/Week)Examination Scheme (Mark PracticalPracticalTutorialCredit $Theory$ Practical02-0440604060	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify appropriate approach to computational problems.
- develop logic building and problem-solving skills.

Section I							
Module No.	Content	Hours	Weightage in %				
1.	Motivation of Programming: Use of Programming, Importance of Programming, Discussion of different Case Study	05	14				
2.	Welcome to Programming: Introduction of Programming, Flow Charts and Algorithms, Debugging, Tracing the execution of the Program, Watching Variables Values in Memory, Character Set, Keyword and Identifiers, Constants and Variables, Data Types - Declaration and Initialization, Basic Input, and Output Operations, Symbolic Constants, Overflow and Underflow of Data.	09	18				
3.	Conditional Statements and Looping Statements: Decision Making & Branching: Decision Making with If and If - else Statements, Nesting of If-else Statements, The Switch and go- to statements. Looping: The while Statement, The Break Statement & The Do While loop, The FOR loop, Jump within loops - Programs.	09	18				
	Section II	1	1				
Module No.	Content	Hours	Weightage in %				
1.	Collection of Data: Introduction, One-dimensional Arrays, Two-dimensional Arrays, Concept of Multidimensional Arrays, Declaring and	10	20				

	Initializing String Variables, Arithmetic Operations on		
	Characters, Putting Strings Together, Comparison of Two Strings,		
	String Handling Functions, Dictionary, List, Tuples and Sets.		
	Functions		
2	Introduction to Functions, defining a Function, Calling a	06	15
۷.	Function, Types of Functions, Function Arguments, Anonymous		15
	Functions, Global and Local Variables, Recursion		
	Building Desktop Application		
3.	Exploring the Tkinter Library in Python, Creating basic Desktop	06	15
	application using Tkinter	00	15
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical	Hours			
1.	Working with basic elements of C languages (different input functions,	2			
	different output functions, different data types, and different operators).	2			
2.	Working with control structures (if statement, if-else statement, nested if-	2			
	else statement, switch statement, break statement, goto statement).	2			
3.	Working with array and strings in C.				
4.	Introduction to Python (Introduction to IDLE, different data types, Input Output in	2			
	Python, Operators, Operator precedence).				
5.	Implementation of Dictionaries, Sets, Tuples and Lists and its various methods in				
	Python.	0			
6.	Working with functions in C/Python.	2			
7.	Working with recursive function in C/Python.	2			
8.	Building desktop application of your own calculator in Python.	4			
9.	Case Study:				
	a. Sorting : Arrange the books	6			
	b. Searching : Find in seconds	0			
	c. Recursion : Tower of Hanoi				
	TOTAL	30			

Use of different libraries will be covered in Practical Assignments.

Text Book(s):

Title				Author(s)	Publication
Program	ming in ANSI C			E. Balagurusamy	Tata McGraw Hill
Python	Programming:	А	modular	Sheetal Taneja, Naveen Kumar	Pearson
approacl	n				

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Python Cookbook	David Ascher, Alex Martelli Oreilly	O Reilly Media

Web Material Link(s):

- <u>https://www.tutorialspoint.com/cprogramming/index.htm</u>
- <u>https://www.w3schools.com/c/</u>
- <u>https://www.tutorialspoint.com/python/</u>
- <u>https://www.w3schools.com/python/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical which will be evaluated out of 10 for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/oral performance consists of 30 marks during End Semester Exam.

Course Outcomes:

After completion of the course, the students will be able to

SECE1120	JOY OF PROGRAMMING
CO 1	Immediately analyze the syntax and semantics of the computer languages and apply it
	in programs.
CO 2	Implement computing solutions using logic building and problem-solving skills of a
02	given programming language.
CO 3	Interpret the fundamental language syntax, semantics and fluent in the use of python
05	or any computer language control flow statements.
CO 4	Determine the methods to create and manipulate programs by utilizing the data
	structures like lists, dictionaries, tuples and sets with emphasis on Python.

Mapping of CO with PO

SECE1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1		2	1	1	2	2	1	1			1	
CO 2	2	1	2							2		1
CO 3	2	1		2								1
CO 4		1	1		1				1			

Mapping of CO with PSO

SECE1120	PSO1	PSO2	PSO3
CO 1	1		1
CO 2		2	
CO 3		1	1

CO 4 2			
	CO 4		2

Level of Revised Bloom's Taxonomy in Assessment:

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1.	Motivation of Programming	1, 2, 4
2.	Welcome to Programming	1, 2, 3
3.	Conditional Statements and Looping Statements	1, 2, 3
4.	Collection of Data	1, 2, 3
5.	Functions	2, 3, 4, 6
6.	Building Desktop Application	2, 3, 4, 6

Department of Chemical Engineering

Course Code: SESH1130 Course Name: Conceptual Experimental Physics Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical Tutorial		Cradit	Theory		Practical		Tutorial		Total	
Theory	FIACULAI		Cleuit	CE	ESE	CE	ESE	CE	ESE	TOLAT
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Prepare students for career in engineering where physics principles can be applied for the advancement of technology.
- Think in core concept of engineering application by studying various topics involved in branch specific application.

Section I					
Module No	Content	Hours	Weightage		
	QUANTUM PHYSICS				
1.	(Prerequisites: Dual nature of radiation, Photoelectric effect Matter waves, wave nature of particles, de-Broglie relation, Davisson-Germer experiment). Introduction; De Broglie hypothesis of matter waves; Properties of matter waves; Phase velocity and group velocity and their relation; Heisenberg uncertainty principle; non-existence of electron in nucleus; Wave function; Physical interpretation of wave function; Schrodinger's time dependent wave equation; time independent wave equation; Quantum Computing	07	16		
	ACOUSTIC AND IILTRASONIC				
2.	 (Prerequisites: Sound, propagation of sound, concept of frequency andwave length). Acoustic–Introduction, Classification and Characterization of Sound, Sabine's formula for reverberation (without derivation), Absorption Coefficients, Sound Absorbing Materials, factors affecting the acoustics of buildings and remedies, Sound Insulation. Ultrasonic – Introduction, Properties of Ultrasonic, Generation of Ultrasonic sound: Piezoelectric & Magnetostriction 	07	16		

	effect, Applications of Ultrasonic.		
	LASER AND FIBRE OPTICS		
	(Prerequisites: Absorption, recombination, Valance and		
	conduction bands, refractive index of a material, Snell's law)		
	LASER – Introduction, Characteristics, Absorption, Spontaneous		
	and stimulated emission; metastable state, population inversion,		
3.	Pumping mechanism, components of LASER; Nd:YAG Laser,	08	18
	Applications of LASER.		
	FIBRE OPTICS – Introduction, Optical Fiber construction, working		
	principle and types, Numerical Aperture, Acceptance angle and		
	Attenuation, Fiber optic communication system, Applications of		
	Optical Fiber.		
	Section II		
Module	Content	Hours	Weightage
			in %
	NANOSCIENCE AND NANOTECHNOLOGY		
	(Prerequisites: Nano scale and structures, general purpose of nano		
	technology, method of formation of nano structure, fullerenes,		
1	carbon nanotubes).	06	14
1.	Nanomaterials: Properties (Physical, Mechanical, Optical,		
	Electrical, Magnetic); Surface to Volume Ratio; Synthesis of		
	Nanomaterials: Bottom up and Top down technique; Methods to		
	synthesize nanomaterials: PVD & Sol-gel, Applications.		
-	SUPERCONDUCTORS AND SUPERCAPACITORS		
	(Prerequisites: Electric current, flow of electric charges in a		
	metallic conductor, drift velocity, mobility and their relation with		
	electric current, Ohm's law, electrical resistance, V-I		
	characteristics (linear and non-linear), electrical resistivity and		
	conductivity temperature dependence of resistance).	08	18
2.	Superconductors: Introduction, Critical temperature, Properties		
	of superconductors, Type of superconductors: Type I and Type II		
	and high Tc superconductors, Applications: Magnets, Josephson		
	effect, SQUID, Maglev, other.		
	Supercapacitors: Principle, construction, materials and		
	Applications, comparison with capacitor and batteries: Energy		
	density, Power density.		
	SEMICONDUCTOR PHYSICS AND TECHNOLOGY		
3.	(Prerequisites: Intrinsic and extrinsic semiconductors, Energy		
	bands in conductors, semiconductors and insulators,		
	Semiconductor diode, I-V characteristics in forward and reverse		
	bias) Direct & indirect band gap semiconductor; Fermi level;		
	Fermi energy level in intrinsic & extrinsic semiconductors; effect	09	18
	of impurity concentration and temperature on fermi level:		
	mobility, current density: Hall Effect: Fermi Level diagram for p-n		
	junction (unbiased, forward bias, reverse bias): Applications of		
	semiconductors: LED, Zener diode, Photovoltaic cell.		

TOTAL	45	100

List of Practical:

Sr. No	Name of Practical	Hours
1.	Analysis of errors.	04
2	To measure diameter of a small spherical body using Vernier calipers and	04
۷.	hencefind its volume.	
3.	To measure the diameter of given object using micrometer screw gauge.	04
4.	Verify ohm's law using ammeter and voltmeter.	04
5.	To study the series and parallel connections of resistors.	02
6.	To study the series and parallel connections of capacitors.	02
7.	I-V characteristics of Light Emitting diode (LED).	02
8.	I-V characteristics of Zener diode.	04
9.	To determine Numerical aperture and acceptance angle of an optical fiber.	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Concept of the Modern Physics	A. Beiser	Tata McGraw-Hill Education
Basic electrical engineering	Kothari and Nagrath	Tata McGraw-Hill Education
Quantum Mechanics	P.M. Mathew, K.	Tata McGraw-Hill Education
	Venkatesan	
Waves and Acoustics	Pradipkumar	New Central Book Agency
	Chakrabarti	
	Satyabrata	
	Chawdhary	
Lasers and Nonlinear Optics	G.D. Baruah	Pragati Prakashan

Reference Book(s):

Title	Author/s	Publication
Engineering Physics	G Vijayakumari	Vikas Publishing house PVT
		LTD
Basic Electronics for Scientistsand	Dennis L. Eggleston	Cambridge University Press
Engineers		

Web Material Link(s):

http:/nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:
- Continuous Evaluation consists of Performance and regular manual writing,
- Internal viva or practical performance consist of 20 Marks. Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- Practical performance/test of 30 marks during End Semester Exam.
- Viva/Oral performance of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

SESH1130	Conceptual Experimental Physics				
CO 1	Understand the framework of quantum mechanics and apply the knowledge ofbasic				
	quantum mechanics to construct one dimensional Schrodinger's wave equation.				
CO 2	Classify the phenomenon of acoustics and ultrasonic in various engineering field and				
	apply it for various engineering and medical fields.				
CO 3	Describe the laser and articulate the idea of optical fiber communications and apply				
	the concepts of lasers and optical fiber communications in every possiblesector.				
CO 4	Interpret the concept of Nanotechnology and understand the synthesis and				
	applications of Nanomaterials from technological prospect. Discover the types and				
	properties of Superconductors. Relate the behavior of superconductors at				
	high temperatures				
CO 5	Distinguish pure, impure semiconductors and characteristics of				
	semiconductor devices. Thus, will be able to use basic concepts toanalyze and				
	design a wide range of semiconductor devices.				

Mapping of CO with PO

SESH1130	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	2	2	2						1		
CO 2	1	3	2	3	1		1			1	2	
CO 3	1	1	1	1	1						1	
CO 4	2	2	1	2	1							
CO 5	1	1	1	1	1					1	2	

Mapping of CO with PSO

SESH1130	PSO1	PSO2	PSO3
CO 1	2	2	
CO 2		1	1
CO 3		2	2
CO 4	2	1	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Quantum Physics	2
2	Acoustic and Ultrasonic	3
3	Laser and Fibre Optics	2,3
4	Nanoscience and Nanotechnology	2,3,6
5	Superconductors and Supercapacitors	1, 2,3
6	Semiconductor Physics and Technology	1,6

Department of Chemical Engineering

Course Code: SECH1110 Course Name: Fundamental Chemistry & Environmental Science Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Scher	ne (Mar	ks)		
Theory	Dractical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
Theory	FIACULAI	TULUTIAI	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand the basic concepts of chemistry, including atoms, molecules, and chemical processes.
- Apply the scientific method to examine chemical phenomena, including the design and execution of experiments, data analysis, and evidence-based conclusion drawing.
- Evaluate the causes and consequences of environmental problems and propose solutions based on scientific evidence.
- Integrate knowledge from multiple disciplines to analyze environmental problems and propose effective solutions.

	Section I					
Module	Content	Hours	Weightage			
NU.	Introduction to Chomistry		111 70			
1.	Overview of the scientific method and chemistry as a science, Basic concepts of matter, including atoms, molecules, and the periodic table, Introduction to chemical bonding and intermolecular forces, Basic principles of chemical reactions, including stoichiometry and reaction types	06	15			
2.	Chemical Thermodynamics and Kinetics Introduction to thermodynamics and the laws of thermodynamics, Energy and enthalpy changes in chemical reactions, Introduction to chemical kinetics and reaction rates, Factors affecting reaction rates, including temperature, concentration, and catalysts	06	15			
3.	Properties of Matter and Solutions Physical properties of matter, including states of matter and phase changes, Solutions and their properties, including solubility and colligative properties, Introduction to acids and bases and their properties, Chemical equilibrium and the equilibrium constant	05	10			

	Organic Chemistry		
	Introduction to organic chemistry and the basics of carbon		
4.	chemistry, Functional groups and their properties, Nomenclature	06	10
	and isomerism in organic compounds, Introduction to organic		
	reactions and mechanisms		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Introduction to Environment		
E E	Definition, principles and scope of Environmental Science, Impacts	06	10
5.	of development on Environment, Environmental Degradation, The	00	10
	interdisciplinary nature of environmental science, Concept of 4R's		
	Environmental Pollution		
	a) Water Pollution: Introduction – Water Quality Standards, Sources		
	of Water Pollution, Classification of water pollutants, Effects of		
	water pollutants.		
	b) Air Pollution: Composition of air, Structure of atmosphere,		
	Ambient Air Quality Standards, Classification of air pollutants,		
6.	Sources of common air pollutants like PM, SO ₂ , NO _x , Auto exhaust,	08	20
	Effects of common air pollutants		
	c) Noise Pollution: Introduction, Sound and Noise, Noise		
	measurements. Causes and Effects.		
	d) Solid Waste: Generation and management		
	e) Bio-medical Waste: Generation and management		
	f) E-waste: Generation and management		
	Social Issues and Environment		
	Sustainable Development Equitable use of Resources for		
7	sustainable lifestyle and it's benefits. Water conservation. Climate	08	20
/.	Change Clobal Warming and Green House Effect Acid Rain	00	20
	Depletion of Ozone laver Carbon Footnrint		
		15	100
	IUIAL	43	100

List of Practical:

Sr. No	Name of Practical	Hours
	Acid-base titration adding a base of known concentration to an acid of unknown	02
1.	concentration until the reaction is complete, and the concentration of the acid	
	is determined.	
2	Determination of the boiling point of a liquid heating a sample of a liquid and	02
۷.	observing the temperature at which it boils.	
2	Determination of the density of a liquid weighing a known volume of a liquid	04
э.	and calculating its density.	
4	Determination of the pH of a solution using a pH meter to measure the acidity	04
4.	or basicity of a solution.	04
F	Flame test: burning a sample of a substance and observing the color of the flame	0.4
5.	to identify the presence of certain elements.	04
6.	Preparation of a salt reacting an acid and a base to form a salt and observing the	02

	reaction products.	
7.	Testing of soil acidity	02
o	Studying the effect of temperature on the solubility of a solid in water at	02
0.	different temperatures to see how temperature affects solubility.	02
0	Studying the properties of acids and bases: Students can test the properties of	04
9.	different acids and bases (e.g., pH, conductivity) and compare their properties.	
10	Investigating the reaction between an acid and a metal and measure the	04
10.	amount of gas produced.	
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Textbook of Environmental Chemistry and	Dr. S. S. Dara, Dr. D.D.	
Pollution Control	Mishra	S Chand & Co Ltd
Environmental Studies	Benny Joseph	Mc.Graw hill education Pvt. Ltd.
Environmental Studies	Dr. S.K. Dhameja	S.K. Kataria & Sons

Reference Book(s):

Title	Author/s	Publication
Engineering Chemistry	Jain & Jain	Dhanpat Rai Publishing
		company
Environmental Studies (From crisis to	R. Rajagopalan	OXFORD university press
cure)		

Web Material Link(s):

https://www.iare.ac.in/sites/default/files/lecture notes/IARE ENS LECTURE NOTES 2.pdf

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal Viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral presentation consists of 30 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the student will be able to

SECH1110	Fundamental Chemistry & Environmental Science
CO 1	Develop a fundamental understanding of the principles and concepts of chemistry,

	including atomic structure, chemical reactions, and chemical bonding.
CO 2	Demonstrate an ability to apply chemical knowledge to real-world problems, such as
	calculating reaction yields and predicting chemical properties.
CO 3	Identify the types of pollution in society along with their sources.
CO 4	Realize the global environmental issues.

Mapping of CO with PO

SECH1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2					2			2		1	2
CO 2	1	1	1			3		3	3		1	3
CO 3	2		1	2		2	2		1	3	1	3
CO 4	2								3		2	3

Mapping of CO with PSO

SECH1110	PSO1	PSO2	PSO3
CO 1	1	3	2
CO 2			
CO 3	3	3	2
CO 4	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Chemistry	2,1
2	Chemical Thermodynamics and Kinetics	4, 5
3	Properties of Matter and Solutions	1,2
4	Organic Chemistry	4,5
5	Introduction to Environment	1,2
6	Environmental Pollution	1,2,3
7	Social Issues and Environment	1,2,3

Department of Mechanical Engineering

Course Code: SEME1120 Course Name: Fundamentals of Technical Drawing Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme				Examination Scheme (Marks)						
(Hours/Week)										
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
-	04	-	04	-	-	40	60	-	-	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know conventions and the methods of engineering drawing.
- Interpret engineering drawings using fundamental technical mathematics.
- Construct basic and intermediate geometry.
- Improve their visualization skills so that they can apply these skills in developing new products.
- Improve their technical communication skill in the form of communicative drawings.
- Comprehend the theory of projection.
- Basic knowledge of computer-aided drawing using AutoCAD.

	Section I					
Module	Contents	Lab	Weightage			
No.		Hours	in %			
	Introduction:					
1.	Importance of the Course; Use of Drawing Instruments and					
	accessories; BIS – SP – 46; Lettering, Dimensioning, and Lines;	03	05			
	Representative Fraction; Types of Scales (Plain and Diagonal					
	Scales); Construction of Polygons.					
2.	Engineering Curves:					
	Classification and Application of Engineering Curves;	12	15			
	Construction of Conics, Cycloidal Curves, Involutes, Spiral, and					
	Normal & Tangent to each curve.					
	Projections of points, lines & planes:					
	Types of Projections; Introduction of Principle Planes of					
3.	Projections; Projection of Points in all four Quadrants; Projection of					
	Lines inclined to one Referral Plane & two Referral Planes. True	15	30			
	length and inclination with reference plane; Projection of Planes					
	(Circular and Polygonal) with inclination to one Referral Plane and					

two Referral Planes; Concept of Auxiliary Projection Method.	

	Section II		
Module	Content	Hours	Weightage
No.			in %
	Orthographic Projection and Isometric Projections		
	Types of Projections: Principle of First and Third Angle Projection		
1.	Applications & Difference; Projection from Pictorial view of Object,	18	30
	View from Front, Top, and Sides; Full Section View. Isometric Scale,		
	Conversion of Orthographic views into Isometric Projection,		
	Isometric View, or Drawing of simple objects.		
	Residential Building Planning:		
2.	Introduction to buildings, Classification of buildings, Principles of		
	building planning, Principles of architecture composition, Detail	06	10
	drawing, Line Plan, plan, elevation, section, Preparing working	00	10
	drawing of residential building.		
3.	Computer-Aided Drawing:		
	Introduction to AutoCAD, Basic commands for 2D drawing (Line,	06	10
	Circle, Polyline, Rectangle, Hatch, Fillet, Chamfer, Trim, Extend, Offset,	00	10
	Dim style, etc.)		
	TOTAL	60	100

List of Practical:

Sr.	Name of Practical	Hours
No.		
	Introduction sheet (dimensioning methods, different types of lines, construction of	
1.	various polygons, dividing the line and angle into parts, use of stencil, lettering), plane	03
	scale and diagonal scale	
2.	Engineering curves	12
3.	Projection of points, lines & planes	15
4.	Orthographic projection	10
5.	Isometric projection	10
6.	Residential building drawing (Line plan, Plan, Elevation, Section, Schedule opening)	04
7.	Computer-Aided Drawing	06
	TOTAL	60

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering Graphics	P J Shah	S. Chand & Company Ltd., New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House, Anand
Building Planning, Designing and	Gurucharan	Standard Book
Scheduling	Singh	

Reference Book(s):

|--|

Engineering Drawing	P.S.Gill	S. K. Kataria & sons, Delhi
Engineering Drawing	B. Agrawal & C M Agrawal	Tata McGraw Hill, New Delhi
Engineering drawing made Easy	K. Venugopal	Wiley Eastern Ltd
Building Drawing	M. G. Shah, C.M. Kale, S.Y. Patki	Tata McGraw Hill

Web Material Link(s):

• <u>http://nptel.ac.in/courses/105104148/</u>

Course Evaluation:

Practical:

- Continuous evaluation consists of performance of practical/tutorial which will be evaluated out of 20 marks for each practical/tutorial and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical test will consist of 30 marks and viva will consist of 30 marks during end semester exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME1120	FUNDAMENTALS OF TECHNICAL DRAWING
CO 1	Apply BIS standards of building planning and conventions while drawing Lines,
	printing Letters, and showing dimensions.
CO 2	Explore the various methods to draw various engineering curves and their
	applications.
CO 3	Classify the orthographic projection systems concerning the observer, object, and
	reference planes.
CO 4	Develop 3D Isometric views in relation to 2D orthographic views.
CO 5	Software application in engineering drawing.

Mapping of CO with PO

SEME1120	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1	1	1				1			1	
CO 2	2		1	1	1			1			1	
CO 3	2		1	1				1			1	1
CO 4	2		1	2	1			1			1	1
CO 5	2	1	1	2	1			1			1	1

Mapping of CO with PSO

SEME1120	PSO1	PSO2	PSO3
CO 1	1	2	2
CO 2	2	2	3
CO 3	2	3	1
CO 4	3	3	3
CO 5	3	3	3

1: Remember	2: Understand	3: Apply

4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2, 6
2	Engineering Curves	2, 6
3	Projection of Points, Line & Plane	1, 2, 3, 4
4	Orthographic Projection	2, 5, 4
5	Isometric Projections and Isometric Drawing	2, 5, 4
6	Computer-Aided Drawing	2,3,6

Department of Civil Engineering

Course Code: SECV1110 Course Name: Core Engineering Concepts. Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exan	nination	Scheme	(Marks	5)	
Theory	Practical	Tutorial	Credit	Theory F		Theory Practical		Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Study the basic fundamentals of construction planning and material.
- Study significance of mechanical engineering systems in different fields of engineering.
- Study the basic concepts of electrical and electronics engineering.

	Section I					
Module	Content	Hours	Weightage			
No.			in %			
1.	Basics of Construction material and techniques					
	Common materials used in construction, Aggregate, Sand, Cement,					
	Bricks, Timber, Steel, Paints. Bonds in brick masonry techniques,	08	18			
	Foam works, Curing, Compaction of concrete, Water proofing, Fire					
	safety norms and requirement.					
2.	Building planning and Bye laws					
	Building by laws as per national building code, building by laws as per					
	local authority, standards for residential, public, commercial,					
	industrial and institutional buildings planning, planning of earth	08	18			
	quake resistance building, overview of RERA and ODPS, Green					
	building and LEED certification, general layout, maps and plan used					
	at construction site.					
3.	Basic Electricity Principles					
	Concept of Charge, Potential Difference and Current, Resistor,					
	capacitor, Inductor, Ohm's law, effect of Temperature on resistance,					
	temperature coefficient, Series and parallel combinations of					
	Resistors and capacitors, Lenz and Faraday's laws for	07	14			
	electromagnetic induction, AC Electricity and DC Electricity.					
	Electrical Wiring: Different types of conductors and cables. Basics					
	of wiring-star and delta connection. Voltage drop and losses across					
	cables and conductors.					
	Section II					

Module	Content	Hours	Weightage
No.			in %
1.	Basics of I.C Engines:		
	Construction and working of 2 Stroke & 4 Stroke Petrol and Diesel		
	Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-	08	18
	Diesel Engine, Efficiency of I. C. Engines.		
2.	Power Transmission Elements:		
	Construction and Applications of Couplings, Clutches and	00	10
	Brakes, Difference Between Clutch and Coupling, Types of Belt Drive	00	10
	and Gear Drive		
3.	DC Circuits and AC Circuits		
	DC Circuits:		
	Introduction of Electrical circuit elements (prerequisites), voltage		
	and current sources, Kirchoff's current and voltage laws, Thevenin		
	and Norton Theorems. Time-domain analysis of first-order RL and RC		
	circuits.		
	AC Circuits:	06	14
	Representation of sinusoidal waveforms, peak and RMS values,	00	14
	Phasor representation of AC quantities, real power, reactive power,		
	apparent power, power factor, Analysis of single-phase ac circuits		
	consisting of R, L, C, RL, RC, RLC combinations (series and parallel),		
	Series and parallel resonance. Three phase balanced circuits, voltage		
	and current relations in star and delta connections, Power		
	measurement in three phase circuits.		
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	Preparation of drawing sheet showing various bonds.	04
2.	Preparation of Basic plan of Construction site.	04
3.	Preparation sketch of various building component.	04
4.	Verify the series and parallel connections of resistors and capacitors.	04
5.	To understand construction and working of various types of boilers.	04
6.	To understand construction and working of mountings and accessories.	04
7.	To verify the Kirchoff's current and voltage laws and Network theorems.	02
8.	To understand construction and working 2 –stroke & 4 –stroke Petrol engines.	02
9.	To understand construction and working 2 –stroke & 4 –stroke Diesel engines.	02
	TOTAL	30

Text Book(s):

Title	Author(s)	Publication
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications
Building construction	Dr. B C Punamia	Laxmi Publication
A text book in Electrical Technology	B L Theraja -	S Chand & Co.
Basic Electrical Engineering	D. C. Kulshreshtha	McGraw Hill, 2009
Reference Book(s):		
Title	Author(s)	Publication
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.

Town Planning	G. K. Hiraskar	Dhanpatrai Publications
Basic Electrical Engineering	Nagsarkar and Sukhija,	Oxford University Press

Web Material Link(s):

• <u>http://nptel.ac.in/course.php</u>

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 20marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test of 30 marks during End Semester Exam.
- Viva/Oral performance of 30 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SECV1110	CORE ENGINEERING CONCEPTS
CO 1	Understand basic properties of various construction materials.
CO 2	Understand the general rules and regulation of building planning.
CO3	Apply the principles of basic mechanical engineering.
C04	Comprehend the importance of mechanical engineering equipment like IC engine and
	power transmission elements.
CO5	Understand working of various instruments and equipments used for the measurement
	of various electrical engineering parameters like voltage, current, power, phase etc in
	industry as well as in power generation, transmission and distribution sectors.

Mapping of CO with PO

SECV1110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1	1	1			2		1	1	2	1
CO 2	2		1	1	2		2		1	2	3	
CO 3	1		2	1	1	2	1		1	2	3	
CO 4	2		1	1						1		1
CO 5			1	2	1		1			1		

Mapping of CO with PSO

SECV1110	PSO1	PSO2	PSO3
CO 1	3		2
CO 2	3	1	1
CO 3	1	1	
CO 4		1	1
CO 5			1

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basics of Construction material and techniques	1, 2, 3
2	Building planning and Bye laws	1, 2
3	Basic Electricity Principles	1,2,3
4	Power Transmission Elements	1, 2
5	Basics of I.C Engines	2
6	DC Circuits and AC Circuits	2,3,4
7	Basics of Steam Generators	1, 2

Centre for Language studies

Course Code: CFLS2130 Course Name: Intermediate Communicative English Prerequisite Course/s: N/A

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			E	Examination Sc	heme (Marks)		
Theory	Practical	Tutorial	Credit	Theory	Practical	Tute	orial	Total
				CE	CE	CE	ESE	
2	0	0	2	100	0	0	0	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective (s) of the course:

To help learners to

- Describe the idea of LSRW English communication abilities, for dealing with people in typical social and/or professional circumstances.
- Infer and react to instructions, paragraphs, articles, official and informal communication, and reading and listening.
- Select and demonstrate the appropriate language, grammar, and pronunciation for typical social or professional contexts.
- Analyse and present instances of effective business-related spoken English.
- Organise your thoughts to create a paragraph that flows smoothly and develop a speech script.
- Make an effort to communicate, take part in a discussion in a small group, and write.

S.No.	Content	Hours	Weightage in %
	Section 1		
1.	Listening Listening to the recording on various topics and responding. The topics may be: Personal information, Travel Information, Listening to radio interviews and summarizing. Students will be expected to demonstrate a level of listening competence as outlined in listening outcomes.	15	25
	Section 2		
2.	Reading and Language Reading various online articles, short stories to develop content to present and discuss. Using collocations, Using a Dictionary. Guessing the context and summarising. Students will be expected to demonstrate a level of reading competence as outlined in reading outcomes.	15	25

	Section 3						
3.	Speaking Skills, Non-Verbal Aspects	15	25				
	Role-plays, Real-life speaking, Presentation by a Company						
	Director, Listening to statistical information, Interview						
	techniques. Students will be expected to demonstrate a level of						
	speaking competence as outlined in learning outcomes.						
	Section 4						
4.	Writing	15	25				
	Noting and changing appointments. Writing e-mails, Applying						
	for a Job, Writing a Business Report, Summarising, Linking ideas						
	and arguments. Students will be expected to demonstrate a level						
	of						
	Speaking competence as outlined in writing outcomes.						

Text Book:

Title	Author(s)	Publication
Business Benchmark	Norman Whitby	Cambridge
Pre-Intermediate to Intermediate		

Reference Book:

Title	Author(s)	Publication
Business Benchmark	Norman Whitby	Cambridge
Pre-Intermediate to Intermediate		
Student's Book		
Business Benchmark	Norman Whitby	Cambridge
Pre-Intermediate to Intermediate		
Teacher's Book		

Online References:

https://www.academia.edu/34869668/Business_Benchmark_Pre_Intermediate-To_Intermediate_Workbook_With_Key

Course Evaluation:

Theory:

• Continuous Evaluation consists of four tests (LSRW), each of 25 marks and 1 hour of duration.

Course Outcome(s):

After the completion of the course, the student will be able to

CFLS2130	Intermediate Communicative English
CO 1	Recognise the importance of the LSRW method for learning English.
CO 2	Read, hear, and decipher communications, letters, etc., and then react
002	properly.
CO 3	Create a basic vocabulary and utilise his/her language abilities to find the
005	information you need from a variety of sources.
CO 4	Identify various social and professional contexts
CO 5	Write and speak at a basic understanding level.

1: Remember	2: Understand	3: Apply			
4: Analyze	5: Evaluate	6: Create			

Module No	Content	RBT Level
1	Listening	1, 2, 3, 4, 5, 6
2	Reading and Language	1, 2, 3, 4, 5, 6
3	Speaking Skills, Non-Verbal Aspects	1, 2, 3, 4, 5, 6
4	Writing	1, 2, 3, 4, 5, 6

Centre for Life Skills Courses (CLSC)

Course Code: CLSC2070 Course Name: Essentials of Entrepreneurship Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					E	xamina	tion Sch	neme (M	larks)	
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
02	00	00	2	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To understand the basics of entrepreneurship and its traits
- To analyze the theory and models of entrepreneurships
- To evaluate different types and dimensions of entrepreneurship

Course Content:

Section I									
Module	Content	Hours	Weightage						
No.			in %						
1.	Introduction to Entrepreneurship Definition of Entrepreneurship, Entrepreneurship as a career choice, Benefits and Myths of Entrepreneurship, Characteristics, Qualities and Skills of an Entrepreneur, Model Traits of Entrepreneurs	07	30						
2.	Dimensions of Entrepreneurship Entrepreneurship Theories, Intrapreneurship, Benefits of intrapreneurship, Difference between Entrepreneurs and Intrapreneurs Institutes for Entrepreneurship Development, startup Failures, Startup Success Stories	08	20						
Module	Content	Hours	Weightage						
No.			in %						
1.	Women Entrepreneurship Women Entrepreneurship Meaning, Factors that influence women Entrepreneurship, Barriers to Women Entrepreneurship, Qualities of Women Entrepreneurs, Success stories of Women Entrepreneurs Lijjat Papad Case study, Jassuben Pizza Case study	08	30						
2.	Social Entrepreneurship and emerging trends Social Entrepreneurship, Functions of Social Entrepreneurship, Difference between Entrepreneurship and Social Entrepreneurship How does an NGO run?, Case Study on Social Entrepreneurship, Emerging trends in Entrepreneurship	07	20						

Text Book(s):

Title	Author/s	Publication
Entrepreneurship Business and Management	Dr. R C Bhatia	Sultan Chand and Sons

Reference Book(s):

Title	Author/s	Publication		
Entrepreneurship	Trehan A	Dremtech		

Web Material Link(s):

- <u>https://www.startupindia.gov.in</u>
- <u>https://ediindia.ac.in</u>
- <u>https://www.ediindia.org</u>

Theory:

- Continuous Evaluation consists of one test of 20 marks, 10 marks assignment, 10 marks presentation, 10 marks class participation and behavior.
- One live project of 50 marks

Course Outcome(s):

CLSC2070	Essentials of Entrepreneurship
CO 1	Students will be able to think of startup ideas
CO 2	Students will be able to apply the model of entrepreneurship practically
CO 3	Students will be able to further analyze other dimensions of Entrepreneurship

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Entrepreneurship	1, 2, 3, 4, 5
2	Dimensions of Entrepreneurship	1, 2, 3, 4, 5
3	Women Entrepreneurship	1, 2, 3, 4, 6
4	Emerging Trends and Social Entrepreneurship	1, 2, 3, 4, 6

SECOND YEAR B. TECH.

				P P SAV	ANI UNIVER	SITY									
				SCHOOL	OF ENGINEE	RING									
	TEACHING & EXAMINATION SCHEME FOR B. TECH. MECHANICAL PROGRAMME AY:2024-25														
					Teachi	ng Scheme				E	xamin	ation	Schen	ne	
Sem	Course	Course Title	Offered		Contact H	ours			The	ory	Prac	tical	Tut	orial	
	Code		By	Theory	Practical	Tutorial	Total	Credit	CE	ES	CE	ESE	CE	ESE	Total
										E					
	SESH2110	Differential Methods & Complex	SH	3	0	2	5	5	40	60	0	0	100	0	200
	00040	Variable							10	60					100
	SEME2210	Engineering Thermodynamics	ME	3	0	0	3	3	40	60	0	0	0	0	100
	SEME2220	Material Science & Metallurgy	ME	3	2	0	5	4	40	60	40	60	0	0	200
2	SEME2231	Manufacturing Technology-I	ME	3	2	0	5	4	40	60	40	60	0	0	200
3	SECV2210	Mechanics of Solids	CV	3	2	0	5	4	40	60	40	60	0	0	200
	CFLS2140	Upper Intermediate	CFLS	2	0	0	2	2	100	0	0	0	0	0	100
		Communicative English		Δ	0	0	Z	Z	100	0	0	0	0	0	100
	CLSC2020	IPDC-I	CLSC	2	0	0	2	2	100	0	0	0	0	0	100
						Total	27	24							1100
	SESH2120	Numerical Methods & Statistics	SH	3	0	2	5	5	40	60	0	0	100	0	200
	SEME2241	Machine Drawing	ME	0	4	0	4	2	0	0	100	0	0	0	100
	SEME2250	Fluid Mechanics	ME	3	2	0	5	4	40	60	40	60	0	0	200
4	SEME2260	Mechanical Measurement &	ME	3	2	0	5	4	40	60	40	60	0	0	200
	510112200	Metrology		5		Ŭ	5	4	10	00	10	00	Ŭ	U	200
	SEME2270	Theory of Machines	ME	3	2	0	5	4	40	60	40	60	0	0	200
	CLSC2030	IPDC-II	CLSC	2	0	0	2	2	100	0	0	0	0	0	100
						Total	26	21							1000

Department of Science & Humanities

Course Code: SESH2110 Course Name: Differential Methods & Complex Variable Prerequisite Course(s): SESH1110- Calculus

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	Dractical	Tutorial	Cradit	The	eory	Prac	ctical	Tut	orial	Total
	Plactical		Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	-	02	05	40	60	-	-	100	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- learn orientation of calculus and its applications in solving engineering problems including differential equations.
- learn introduction of Partial Differential Equations with methods of its solutions.
- learn applications of Laplace Transforms for solving ODEs.
- learn introduction of Periodic functions and Fourier series with their applications for solving ODEs.
- Represent complex numbers algebraically and geometrically.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Ordinary Differential Equation First order ODEs, Formation of differential equations, Exact, linear and Bernoulli's equations, Ordinary differential equations of higher orders, Homogeneous Linear ODEs of Higher Order, Homogeneous Linear ODEs with Constant Coefficients, Euler–Cauchy Equations Differential Operators Nonhomogeneous ODEs, Variation of Parameters.	10	20				
2.	Partial Differential Equation Formation of First and Second order equations, Solution of First order Linear and Non-liner equations, Higher order equations with constant coefficients, Complementary function, Particular Integrals, Initial and boundary conditions, Modeling and solution of the Heat, Wave and Laplace equations.	08	17				
3.	Laplace Transform Laplace Transform, Linearity, First Shifting Theorem, Existence Theorem, Transforms of Derivatives and Integrals, Unit Step Function,	07	13				

	Second Shifting Theorem, Laplace Transformation of Periodic											
	function, Inverse Laplace transform, Convolution, Systems of ODEs											
	Section II											
Module	Contont	Hours	Weightage									
No.	content	nours	in %									
	Fourier Series											
4.	Fourier Series of $2n$ periodic functions, Euler Formula, Arbitrary	07	14									
	Period, Even and Odd function, Half-Range Expansions.											
	Complex Variables											
Ę	Complex Variable – Differentiation, Complex number, polar form of	00	21									
Э.	complex number, Cauchy-Riemann equations, analytic functions,	00										
	harmonic functions, Mobius transformations and their properties.											
	Complex Variable - Integration											
6.	Representation by Fourier Integral, Cauchy's integral theorem and	05	15									
	formula, Taylor and Laurent series.											

List of Tutorials:

Sr. No.	Name of Tutorial	Hours
1.	Ordinary Differential Equation-1	2
2.	Ordinary Differential Equation-2	2
3.	Ordinary Differential Equation-3	2
4.	Partial Differential Equation-1	2
5.	Partial Differential Equation-2	4
6.	Laplace Transform-1	4
7.	Laplace Transform-2	2
8.	Fourier Series-1	2
9.	Fourier Series-2	2
10.	Complex Variables -1	2
11.	Complex Variables -2	2
12.	Complex Variables -3	4

Text Book(s):

Title	Author/s	Publication
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.
Complex Variables and Applications,	J. W. Brown and R. V.	McGraw Hill.
	Churchill	

Reference Book(s):

Title	Author/s	Publication
Higher Engineering Mathematics	B. S. Grewal	Khanna Publishers
A first course in complex analysis	Dennis G. Zill, Patrick D.	Jones and Bartlett Publishers Inc.
with applications	Shanahan	
Differential Equations for Dummies	Steven Holzner	Wiley India Pvt. Ltd.
Higher Engineering Mathematics	H.K. Dass, Er. Rajnish	S. Chand & Company Pvt. Ltd.
	Verma	

Web Material Link(s):

- <u>http://nptel.ac.in/courses/111105035/</u>
- <u>http://nptel.ac.in/courses/111106100/</u>
- <u>http://nptel.ac.in/courses/111105093/</u>
- <u>http://nptel.ac.in/courses/111108081/</u>
- <u>http://nptel.ac.in/courses/111/103/111103070/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 50 marks.
- MCQ based examination consists of 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After completion of the course, the student will be able to

SESH2110	DIFFERENTIAL METHODS & COMPLEX VARIABLE
C01	Describe 1st and 2nd order odes and pde's.
C02	Classify differential equations and evaluate linear and nonlinear partial differential equations.
CO3	Apply Laplace transform as a tool which are used to evaluate differential equation.
C04	Examine the various tests of power series and Fourier series for learning engineering.
CO5	Demonstrate understanding of the basic concepts underlying complex analysis to evaluate definite integrals and infinite series.

Mapping of CO with PO

SESH2110	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1	1	1								1
CO 2	1	1	1									1
CO 3	2	1	1	1								1
CO 4	2	1	1									1
CO 5	2	2	1	1								1

Mapping of CO with PSO

SESH2110	PSO1	PSO2	PSO3
CO 1	2	1	
CO 2	1	1	
CO 3	1	1	
CO 4	2		

CO 5	2	1	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Ordinary Differential Equation	1, 2, 3, 5
2	Partial Differential Equation	1, 2, 4, 5
3	Laplace Transform	1, 2, 4, 5
4	Fourier Series	1, 2, 3, 5
5	Complex Variables	1, 2, 3, 4, 5
6	Complex Integration	1, 2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME2210

Course Name: Engineering Thermodynamics

Prerequisite Course(s): SEME1030-Elements of Mechanical Engineering

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatior	Scheme	(Marks)			
Theory	Practical	Tutorial	Credit	Theory		Theory Pr		Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE			
03	-	-	03	40	60	-	-	-	-	100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify different aspects of thermodynamics and their application.
- interpret different laws of thermodynamics and their application to field and daily life.
- understand various gas laws and equations of state and their application.
- understand the role of entropy, exergy to the universe.

	Section I						
Module	Content	Hours	Weightage				
No.			in %				
	Basic Concepts of Thermodynamic						
	Classical and statistical thermodynamic approach, Thermodynamic:						
1.	system, properties, states, processes, cycle &equilibrium, Concepts of:	05	07				
	control volume and control surface, Specific heat capacity, Internal						
	Energy, Enthalpy, Specific						
	Volume, heat and work.						
	First and Second law of Thermodynamics						
	First law for a closed system undergoing a cycle and change of state,						
	energy, PMM1, First law of thermodynamics for a non- flow and flow						
2.	process. Limitations of first law of thermodynamics, Statements of	08	20				
	second law of thermodynamics and their equivalence, PMM2,						
	Carnot's theorem, Corollary of						
	Carnot's theorem, Causes of irreversibility.						

	Entropy		
	Clausius theorem, property of entropy, Clausius inequality, entropy		
3.	change in an irreversible process, principle of increase of entropy,	05	15
	entropy change for non-flow and flow processes, third law of		
	thermodynamics, PPM3, Entropy change for phase		
	changing process.		
	Exergy		
	Energy of a heat input in a cycle, exergy destruction in heat transfer		
4.	process, exergy of finite heat capacity body, exergy of closed and	05	08
	steady flow system, irreversibility and Gouy-Stodola theorem and its		
	applications, second law efficiency.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Vapour Power Cycles		
5.	Carnot vapor cycle, Rankine cycle, comparison of Carnot and	06	15
	Rankine cycle, carnot cycle efficiency, variables affecting efficiency of		
	Rankine cycle.		
	Gas Power Cycles		
	Carnot, Otto and Diesel cycle, Dual cycle, Comparison of Otto, Diesel		
6.	and Dual cycles, air standard efficiency, mean effective pressure,	06	15
	brake thermal efficiency, relative efficiency, Brayton cycle.		
	Properties of gases and gas mixtures		
	Avogadro's law, equation of state, ideal gas equation, Vander Waal's		
7.	equation, reduced properties, law of corresponding states,	06	12
	compressibility chart, Gibbs-Dalton law, internal energy; enthalpy		
	and specific heat of a gas mixtures.		
	Cryogenic Refrigeration System:		
	Ideal isothermal and reversible isobaric source refrigeration cycles,	04	08
	Joule Thomson system, cascade or pre-cooled joule-Thomson		
	refrigeration systems, expansion engine and cold gas effectiveness for		
8.	the Philips refrigerators, Gifford single volume refrigerators analysis,		
	COP, FOM, refrigerators, pulse tube refrigerators, various types of		
	pulse tube refrigerator.		
	Refrigerators using solids as working media		
	Magnetic cooling, magnetic refrigeration systems, thermal, valves,		
	nuclear demagnetization.		
	TOTAL	45	100

Text Book (s):

Title	Author/s	Publication
Engineering Thermodynamics	P.K. Nag	McGraw-Hill Education

Reference Book(s):

Title	Author/s	Publication
Fundamentals of Thermodynamics	Borgnakke & Sonntag	Wiley India (P) Ltd.
Thermodynamics - An Engineering	Yunus Cengel & Boles	McGraw-Hill Education
Approach		
Engineering Thermodynamics	Gordon Rogers & Yon	Pearson Education Ltd.
	Mayhew	
Engineering Thermodynamics	Jones and Dugan,	PHI Learning Pvt. Ltd

Web Material Links:

• <u>http://nptel.ac.in/courses/112105123/1</u>

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2210	ENGINEERING THERMODYNAMICS
CO 1	Interpret basic terminologies of thermodynamics.
CO 2	Define and demonstrate the laws of thermodynamics and its application in routine life.
CO 3	Interpret the concept of entropy and exergy.
CO 4	Analyze different gas and vapour power cycles and its applications to the diff. power
	plants.
CO 5	Identify different laws and its application related to gases and its mixtures.

Mapping of CO with PO

SEME2210	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1										
CO 2	2	1								2		
CO 3	2	1								1		
CO 4	1	2								2		
CO 5	1	2								2		

Mapping of CO with PSO

SEME2210	SEME2210 PSO1		PSO3
CO 1			

CO 2	3		
CO 3	3	3	
CO 4	3	3	
CO 5	3	3	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basic Concepts of Thermodynamic	1, 2
2	First and Second law of Thermodynamics	1, 2, 3
3	Entropy	1, 2, 3
4	Exergy	1, 2, 3
5	Vapour Power Cycles	2, 5
6	Gas Power Cycles	2, 5
7	Properties of gases and gas mixture	1, 2, 3
8	Refrigeration and Liquefaction	2, 3, 5

Department of Mechanical Engineering

Course Code: SEME2220 Course Name: Material Science & Metallurgy Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory Practical		Tuto	orial	Total		
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify the different materials and their properties described.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- understand the process involved in mechanical testing of materials and their deformation under certain conditions.
- understand the role of heat treatment to achieve desired variation in properties of materials.

	Section I						
Module	Content	Hours	Weightage				
No.			in %				
	Introduction to Materials						
	Classification of Engineering Materials, Engineering						
	requirements of materials, Methods/Tools to reveal the						
	different levels of structure. Defects-Point, Line, Planar; Crystal						
	geometry and Crystal Imperfections: Unit Cell, Crystal structure,						
1.	Bravise lattice, atomic packing, coordination number, crystal	06	12				
	structures of metallic elements, crystal directions and planes,						
	Miller indices, Polymorphism or Allotropy. Crystal structure						
	and correlated properties. diffusion processes, Mechanism of						
	crystallization – nucleation and growth, factors						
	influencing nucleation and growth, Imperfections in						
	crystals and their effect on properties, Solute						
	strengthening, Corrosion.						

	Phase Diagrams and Phase Transformation		
	Phase, Gibbs's Phase rule, Solubility and Solid Solutions, Iso-		
2.	morphous alloy system, Eutectoid and Peritecticsystem, Evol		
	ution of Microstructure, Phase	05	10
	Transformation-Temperature-Time-Transformation (TTT) and		
	Continuous Cooling Transformation (CCT) Diagrams, Electro		
	Microscopy.		
	Solidification of Metals		
	Solidification of metals and an alloy, Nucleation and Growth		
	during freezing of pure metal and alloy ingot/a casting		
3.	Resultant macrostructures; Effects of Structure on Mechanical	05	10
	Properties, Methods to control the grain structure resulting		
	from solidification, Solidification defects like porosity and		
	shrinkage and remedies. Cooling		
	curve of pure metal and alloy.		
	Heat Treatment		
	Annealing and its types, Normalizing, Aus-tempering, Mar-		
	tempering, Quenching and Temper heat treatment,		
	Hardenability, Applications of above processes for theindustrial		
4.	practices.	04	13
	Surface hardening processes		
	Flame and induction hardening, Carburizing, Nitriding and		
	Carbonitriding, Applications of above processes for the		
	industrial practices.		
	Powder Metallurgy		
5.	Application and advantages, Production of powder,	02	05
	Compacting, Sintering, Equipment and process capability.		
	Section II		1
Module	Content	Hours	Weightage
No.			in %
	Cast Iron and Alloy steel		
	Iron-Iron Carbide and Iron-carbon diagrams, Iransformations		
	resulting into white Cast Iron, Grey Castiron, Malieable Cast		
	Iron, S. G. Iron, Alloy Last Iron. Their microstructures and		
6	correlated properties and applications, is Codification, Purpose	00	10
6.	of alloying, General effect of alloying elements on ferrite,	08	18
	carbide, transformation temperature, hardenability and		
	tempering. Types of steel: Chromium, Manganese, Molybdenum		
	and Manganese steels, IS Councetion, 1001 Steels Classification,		
	properties, applications and IS and ISO Codification.		
	Non-Ferrous Alloys		
	Non-Ferrous Alloys of Aluminium, Magnesium, Copper, Nickel,		

7.	Titanium, Microstructure and mechanical property	03	05
	relationships; Composite, Classification, Processing, Metal		
	Matrix		
	Mechanical Behavior of Metals		
	Properties of metals, Deformation of metals, Mechanisms of		
8.	deformation, Deformation in polycrystalline materials,	03	12
	Mechanical testing of materials (destructive & nondestructive)		
	testing methods.		
	Polymers, Ceramics and Composites		
	Definition, Classification & characteristics of polymers, Types of		
	polymerization, Polymer processing, polymer matrix,		
	properties and applications Elastomers, Properties of ceramic		
9.	materials, Cermets, Ceramic Matrix, Ceramics, Alumina,	05	08
	Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon		
	Nitride, Processing Composite materials, Fiber reinforced		
	plastic (FRP), Glasses properties and applications.		
	Energy Materials		
	Issues and challenges of functional nanostructured materials		
	for electrochemical energy storage systems, Primary and		
	Secondary batteries, Lithium ion batteries, Current status and		
10.	future trends. Capacitor, Electrochemical supercapacitors,	04	07
	Current status and future trends, electro chromic energy		
	storage device, Porous materials to store clear energy gases,		
	Metal organic frame works(MOFs), hydrogen storage, Storage of		
	carbon dioxide, CO2 capture and conversion.		
	TOTAL	45	100

List of Practical:

Sr. No.	Name of Practical	Hours
1.	To understand construction and working of metallographic microscope.	02
2.	To study procedure of specimen preparation for microscopic examinationand to	04
	carry out a specimen preparation.	
3.	To understand what is micro examination, importance of micro	04
	examination and to study various ferrous, non-ferrous microstructures.	
4.	To show the effect of different quenching media like Oil, Water and Brineon the	04
	hardness of medium carbon steel.	
5.	To find out the effect of varying section size on hardenability of steel andobtain	04
	hardness distribution curves of hardened steel cross-section.	
6.	To determine machine defects by dye -penetrant test and magnetic particletest.	04
7.	To determine the hardenability by Jominy end quench test.	04
	Study of different heat treatment processes- annealing, normalizing, hardening	
8.	and tempering, surface and casehardening to improve properties of steel during	04

processes and applications with the help of mufflefurnace.	
TOTAL	30

Text Book(s):

Title	Author/s	Publication
Callister's Material Science and Engineering	R. Balasubramaniam	Wiley India

Reference Book(s):

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. khanna	Dhanpatrai Publication
Principles of Materials Science and Engineering	W F Smith	McGraw Hill
Elements of Material Science and Engineering	Lawrence H. Van Vlack,	Pearson Education

Web Material Links:

• http://nptel.ac.in/downloads/113106032/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2220	MATERIAL SCIENCE & METALLURGY
C01	Understand the basic concept of material science and metallurgy.
CO2	Know about the ferrous and non ferrous metals and alloys and their applications.
CO3	Understand and apply various heat treatment process to get desired material
	properties.
CO4	Examine the mechanical properties of metals through various destructive and non
	destructive methods.
C05	Understand the importance of powder metallurgy & judge the scope and limitations

Mapping of CO with PO

SEME2220	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	3	2			3	3	1				3
CO 2	2	3	2			3	3	3	2	1	1	3
CO 3	2	3	2			3	3	3	2		2	3
CO 4	2	3	3	3	3	3	3	3	1	2	2	3
CO 5	2	3	2			3	3		2		1	3

Mapping of CO with PSO

SEME2220	PSO1	PSO2	PSO3
CO 1	1	3	2
CO 2	1	3	1
CO 3	3	3	3
CO 4	3	3	3
CO 5	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Materials	1
2	Phase diagrams and phase transformation	1, 2, 4
3	Solidification of Metals	2, 4
4	Heat Treatment, Surface hardening process	3, 5
5	Powder Metallurgy	2, 5
6	Cast Iron and Alloy Steel	1, 2
7	Non Ferrous Alloys	1, 2
8	Mechanical Behaviour of Metals	2, 3, 5
9	Polymers, Ceramics and Composites	2, 4
10	Energy Materials	1,2

Department of Mechanical Engineering

Course Code: SEME2231 Course Name: Manufacturing Technology - I Prerequisite Course(s): -- SEME1020 – Engineering Workshop

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	ory	Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various manufacturing techniques.
- learn the background for higher level subjects in engineering like Production Technology.
- understand the relevance and importance of the Different manufacturing techniques and real-life application in industry.

Section I					
Module	Content	Hours	Weightage		
No.			in %		
	Manufacturing Processes				
1.	Basic Introduction, Economics and Technological Definition,	02	05		
	Importance of Manufacturing, Classification and Selection of				
	Manufacturing Processes.				
	Patternmaking and Foundry				
	Patterns, Allowances, Types of patterns, Moulding materials,				
	Moulding sands; properties and sand testing: Grain fineness,				
2.	moisture content, clay content and permeability test. Core materials	12	25		
	and core making, Gating & Riser systems, Spure, Gating, Ration,				
	Cupola, Inspection and Cleaning of casting, Casting defects.				
	Miscellaneous Casting Process				
3.	Shell moulding, Die casting, investment Casting, Carbon dioxide	08	18		
	molding process, Centrifugal casting, Slush casting, Continuous				
	casting process, Advanced technologies in casting.				
	Section II				

Module	Content		Weightage
			in %
	Gas Welding		
	Principles of gas welding, Types of gases used, Types of flames,		
4.	Welding techniques, Edge preparation, Equipment used, Torch,	08	18
	Regulators, Welding filler rods, Gas cutting, Principles of gas		
	cutting, Position of torch, Soldering, Brazing, Adhesive bonding.		
	Electric Arc Welding		
	Principles of electric arc welding, A.C. / D.C. welding, Edge		
5.	preparation, Equipment used, ISI electrode classification:	05	10
	Designation and selection, Manual metal arc welding, Carbon arc		
	welding, Inert gas shielded arc welding, TIG & MIG, Submerged arc		
	welding, Atomic hydrogen arc welding, Plasma arc welding, Stud arc		
	welding, Arc cutting.		
	Resistance Welding		
	Principles of resistance welding, Heat balance, Electrodes, Spot		
6.	welding, Seam welding, Projection welding, Upset welding, Flash	04	12
	welding, Fusion welding processes: Thermit welding, electro-slag		
	welding, Electron beam and laser beam welding.		
	Green Manufacturing		
	Why Green Manufacturing, Motivations and Barriers to Green		
	Manufacturing, Environmental Impact of Manufacturing, Strategies		
	for Green Manufacturing. The Social, Business, and Policy	06	12
7.	Environment for Green Manufacturing: Introduction, The Social		
	Environment—Present Atmosphere and Challenges for Green		
	Manufacturing, The Business Environment: Present Atmosphere		
	and Challenges, The Policy Environment—Present Atmosphere		
	and Challenges for Green Manufacturing.		
	TOTAL	45	100

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of different types of patterns & types of molding methods	02
2.	Design of Gating system & Design of Riser	02
3.	To Find out the Moisture Content, Permeability and Hardness of Moulding Sand	04
4.	Casting Defects, their Causes and Remedies	02
5.	Tutorial on Casting Simulation	04
6.	Study different Welding Processes, Weld Joint Design as per I.S. code and Weld	04
	Symbols	
7.	Gas Welding and Gas Cutting Processes	04
8.	MIG & TIG Welding Process	04
9.	Resistance Welding Process	04
----	----------------------------	----
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Manufacturing Technology Vol. II	P.N. Rao	Tata McGraw Hill
A Textbook of Production Technology	Sharma P. C.	S. Chand

Reference Book(s):

Title	Author/s	Publication
Manufacturing Technology – I	Rao	Tata McGraw Hill
A Textbook of Production Engineering	Sharma P.C.	S. Chand
Manufacturing Processes and Systems	Phillip F., Ostwald, Jairo Munoz	Wiley India
Elements of Workshop Technology V. II	Chaudhary	MPP
Manufacturing technology	Rao	Atul
Work shop Technology -1	Hajra	MPP

Web Material Links:

• https://nptel.ac.in/courses/112107145

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2231	MANUFACTURING TECHNOLOGY – I
C01	Articulate basic knowledge of manufacturing processes to implement in professional
	skills.
CO2	Describe patternmaking process and casting defects
CO3	Differentiate various casting processes for good manufacturing practices.

CO4	Demonstrate gas welding and cutting process for different application							
CO 5	Identify, classify and apply arc & resistance welding processes used for various							
	applications in industrial practice.							

Mapping of CO with PO

SEME2231	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2				1						2	
CO 2	2				3		3					2
CO 3	2				2		3		2			2
CO 4	2				3		3	1	2			2
CO 5	2				3		3	1	2			2

Mapping of CO with PSO

SEME2231	PSO1	PSO2	PSO3
CO 1	1	1	1
CO 2	3	2	2
CO 3	3	2	2
CO 4	3	2	2
CO 5	3	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Manufacturing Processes	1, 2, 4, 6
2	Patternmaking and Foundry	1, 2, 5, 6
3	Miscellaneous Casting Process	1, 2, 6
4	Gas Welding	1, 2, 5
5	Electric Arc Welding	2, 5, 6
6	Resistance Welding	2, 5, 6
7	Green Manufacturing	1, 2, 3

Department of Civil Engineering

Course Code: SECV2210 Course Name: Mechanics of Solids Prerequisite Course/s: -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theorem Dreatical		Tutorial	Credit	Credit Theo		Prac	ctical	Tut	orial	Total
Theory	Plactical Intollal	CE		ESE	CE	ESE	CE	ESE	TOLAI	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand different types of forces, systematic evaluation of effect of these forces, behavior of rigid and deformable bodies subjected to various types of forces at the state of rest or motion of the particles.
- understand the stresses developed under the application of force.
- understand the physical and mechanical properties of materials.
- understand the behavior of structural elements under the influence of various loads.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction: Definition of Rigid Body, Deformable Body, Scalar and Vector Quantities, Fundamental Principles of Mechanics: Principle of	05	11					
1.	Transmissibility, Principle of Superposition, Law of Parallelogram of Forces.							
2.	 Fundamental of Static: Force, Types of Forces, Characteristics of a Force, System of Forces, Composition and Resolution of Forces. Concurrent Forces: Resultant of Coplanar Concurrent Force System by Analytical Method, Law of Triangle of Forces, Law of Polygon of Forces, Equilibrium Conditions for Coplanar Concurrent Forces. Non-Concurrent Forces: Moments & Couples, Characteristics of Moment And Couple, Varignon's Theorem, Resultant of Non-Concurrent Forces by Analytical Method, Equilibrium Conditions of Coplanar Non-Concurrent Force System. 	06	14					
3.	Centroid and Centre of Gravity:	05	11					

	Centroid of Lines, Plane Areas and Volumes, Examples Related to		
	Centroid of Composite Geometry, Pappus –Guldinus Theorems.		
4.	Moment of Inertia: Parallel and Perpendicular Axis Theorems, Polar Moment of Inertia, Radius of Gyration of Areas, Examples related to moment of Inertia of Composite geometry.	06	14
	Section II		
Module No.	Content	Hours	Weightage in %
5.	Mechanical Properties of Materials: Introduction, Classification of Materials, Properties Related to Axial, Bending, and Torsional & Shear Loading, Toughness, Hardness, Ductility, Brittleness. Proof stress, Factor of Safety, Working Stress, Load Factor.	04	12
6.	Simple Stress and Strain: Definition of Stress and Strain, Tensile & Compressive Stresses: Shear and Complementary Shear Strains, Linear, Shear, Lateral, Thermal and Volumetric. Hooke's Law, Stresses and Strain in bars of Varying, Tapering & Composite Section, Principle of Superposition. Elastic Constant, Relation between Elastic Constants.	07	15
7.	Shear Force and Bending Moment: Introduction, Types of Loads, Supports and Beams, Shear Force, Bending Moment, Sign Conventions for Shear Force & Bending Moment. Statically Determinate Beam, Support Reactions, SFD and BMD for Concentrated Load and Uniformly Distributed Load, Uniformly Varying Load, Point of Contra-flexure.	12	23
	TOTAL	45	100

List of Practical (Any Ten):

Sr. No	Name of Practical	Hours
1.	Equilibrium of coplanar concurrent forces	02
2.	To verify the law of parallelogram of forces	02
3.	To verify the law of polygon of forces	02
4.	To verify the Lami's theorem	02
5.	Equilibrium of parallel force system – simply supported beam	02
6.	Tensile test on Ductile materials.	02
7.	Compression test on Ductile materials	02
8.	Compression test on Brittle Materials	02
9.	Determination of hardness of metals (Brinell/ Rockwell hardness test)	02
10.	Determination of impact of metals (Izod/ Charpy impact test)	02
11.	Tutorial on concurrent & Non-concurrent forces	04
12.	Tutorials on C. G & MI	02
13.	Tutorials on SFD & BMD	04
	TOTAL	30

Text Book(s):

Title	Author(s)	Publication
Applied Mechanics	S. B. Junnarkar & H. J. Shah	Charotar Publication
Strength of Materials (SI Units)	R S Khurmi, N Khurmi	S. Chand & Company Pvt. Ltd.

Reference Book(s):

Title	Author(s)	Publication
Engineering Mechanics,	Meriam and Karaige,	Wiley-India
Engineering Mechanics: Statics and	S Rajsekaran	Vikas Publication
Dynamics		
Engineering Mechanics of Solids	Popov E.P	Prentice Hall of India
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.
Mechanics of Structure-Vol.I	Dr. H.J. Shah & S. B. Junarkar	Charotar Publishing House Pvt.
		Ltd.
Strength of materials	R. Subramanian	Oxford Publications
Strength of materials	S. Ramamrutham	DhanpatRai Publishing Company
Strength of Materials (SI Units)	Er. R . K. Rajput	S. Chand & Company Pvt. Ltd.

Web Material Link(s):

- http://nptel.ac.in/courses/122104014/
- <u>http://nptel.ac.in/courses/112103108/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will be able to

SECV2210	MECHANICS OF SOLIDS
CO 1	Identify fundamental principles of mechanics, equilibrium, statics reactions and internal
	forces in statically determinate beams.
CO 2	Understand, the basics of friction and its importance.
CO 3	Apply principles of statics to determine c.g and m.i of a different geometrical shape.

CO 4	Analyse problems and solve the problem related to mechanical elements and analyse the
	deformation behaviour for different types of loads.

Mapping of CO with PO

SECV2210	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1										
CO 2	2	1	1									
CO 3	2	1										
CO 4	2	1		1	1							

Mapping of CO with PSO

SECV2210	PS01	PSO2	PSO3
CO 1	3		
CO 2	3		
CO 3	3		
CO 4	2		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module	Content	RBT Level
No		
1	Introduction	1, 2,
2	Fundamental of Static	2, 3, 4
3	Centroid and Centre of Gravity	2, 4, 5
4	Moment of Inertia	3, 4, 5
5	Mechanical Properties of Materials	1, 2, 5
6	Simple Stress and Strain	2, 4, 5
7	Shear Force and Bending Moment	3, 4, 5

Department of Science & Humanities

Course Code: SESH2120 Course Name: Numerical Method & Statistics Prerequisite Course(s): SESH2110- Differential Methods and Complex Variable

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	aminati	on Scher	ne (Mar	ks)	
Theory	been Dreatical Tytorial		1 Tutorial Cradit		eory	Prac	ctical	Tut	orial	Total
Theory	Tactical	Tutoriai	Cleuit	CE	ESE	CE	ESE	CE	ESE	TOLAI
03	-	02	05	40	60	-	-	100	00	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- provide the knowledge of numerical analysis & statistical methods to the students.
- mentally prepare the students to identify and formulate the engineering problem and obtain their solution.
- inculcate the analytical skill of the students to apply the Numerical & Statistical techniques to the problems of respective field.

	Section I						
Module	Content	Hours	Weightage				
NO.			In %				
1.	Approximations and Errors: Errors and Their computations, General error formula. Solution of Algebraic and Transcendental Equations: Bracketing Methods (Bisection, Secant, Method of False Position), Convergence of Iterative Methods, Newton-Raphson Method, Newton-Raphson Method	7	17				
2.	Numerical Solutions of Linear Equations Gauss-Seidel Method Iteration Method, Jacobi's Method, Gauss- Seidel Method, Eigen Value Problem.	6	13				
3.	Numerical Differentiation and Integration Finite Differences: Forward, Backward and Divided Differences Table, Newton's Forward, Backward and Divided Differences Interpolation Formula, Interpolation Polynomials, Lagrange Interpolation Formula Interpolation, Numerical Integration, Trapezoidal Rule, Simpson's 1/3-rule, Simpson's 3/8-rule.	10	20				
	Section II						
Module	Content	Hours	Weightage in %				

4.	Numerical Methods for ODEs : Taylor's Series and Euler's Method, Modifications and Improvements in Euler's Method, Runge-Kutta 2nd Order & 4th Order Methods, Milne's Predictor-Corrector Methods, Boundary Value Problems.	7	16
5.	Basics of Statistics Elements, Variables, Observations, Quantitative and Qualitative data, Cross-sectional and Time series data, Frequency distribution, Dot plot, Histogram, Cumulative distribution, Measure of location, Mean, Median, Mode, Percentile, Quartile, Measure of variability, Range, Interquartile Range, Variance, Standard Deviation, Coefficient of Variation, Regression line and regression coefficient, Karl Pearson's method	7	16
6.	Probability Distribution Introduction, Conditional probability, Independent events, independent experiments, Bayes' theorem, Probability distribution, Binomial distribution, Poisson distribution, Normal distribution.	8	18

List of Tutorials:

Sr.	Name of Tutorial	Hours
No.		
1.	Approximations and Errors	2
2.	Solution of Algebraic and Transcendental Equations	4
3.	Numerical Solutions of Linear Equations	2
4.	Numerical Differentiation and Integration-1	2
5.	Numerical Differentiation and Integration-2	2
6.	Ordinary Differential Equations-1	2
7.	Ordinary Differential Equations-2	4
8.	Basics of Statistics-1	4
9.	Basics of Statistics-2	2
10.	Probability-1	4
11.	Probability-2	2

Text Book(s):

Title	Author/s	Publication	
Advanced Engineering Mathematics	Erwin Kreyszig	Wiley India Pvt. Ltd.	
		New Delhi.	
Probability and Statistics for Engineers	Richard A. Johnson	Pearson India Education	
	Irwin Miller, John Freund	Services Pvt. Ltd., Noida.	

Reference Book(s):

Title	Author/s	Publication
Numerical Methods in Engineering &	B. S. Grewal	Khanna Publishers, New Delhi
Science		
Advanced Engineering Mathematics	R. K. Jain, S. R. K.	Narosa Publishing House, New Delhi.
	Iyengar	
Introductory Methods of Numerical	S. S. Sastry	PHI Learning Pvt. Ltd., New Delhi.

Analysis.		
Statistics for Business and	David R. Anderson,	Cengage Learning
Economics	Dennis J. Sweeney,	
	Thomas A.Williams	

Web Material Link(s):

- <u>http://nptel.ac.in/courses/111106094/</u>
- <u>http://nptel.ac.in/courses/111105035/</u>
- http://nptel.ac.in/courses/111101003/
- <u>http://nptel.ac.in/courses/111105090/</u>
- <u>http://nptel.ac.in/courses/111107105/</u>
- <u>http://nptel.ac.in/courses/110107114</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 50 marks.
- MCQ based examination consists of 20 marks.
- Internal Viva consists of 30 marks.

Course Outcome(s):

After completion of the course, the student will be able to

SESH2120	NUMERICAL METHODS & STATISTICS
CO 1	Derive numerical solution of linear and nonlinear system of equation.
CO 2	Acquire knowledge of finite differences, interpolation, numerical differentiation and
CO 2	numerical integration.
CO 3	Compare variety of numerical methods for solving ordinary differential Equation.
CO 4	Construct different statistical methods to collect, compare, interpret & evaluate data.
CO 5	Apply probability in decision making, artificial intelligence, machine learning etc.

Mapping of CO with PO

							-					
SESH2120	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	3	1	1	1								1
CO 2	2	1	1	2								1
CO 3	2	2	1	1								1
CO 4	2	1	1	1								1
CO 5												

Mapping of CO with PSO

SESH2120	PSO1	PSO2	PSO3
CO 1		2	
CO 2		2	
CO 3		2	
CO 4		2	
CO 5			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Solution of Algebraic and Transcendental Equations	1, 2, 3, 4, 6
2	Numerical Solutions of Linear Equations	1, 2, 3, 5
3	Numerical Differentiation and Integration	1, 2, 3, 5
4	Numerical Methods for ODEs	1, 2, 3, 5, 6
5	Basics of Statistics	1, 2, 3, 4, 5
6	Probability Distribution	1, 2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME2241 Course Name: Machine Drawing

Prerequisite Course(s): SEME1010 - Engineering Graphics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exar	ninatior	Scheme	(Marks)		
Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
00	04	00	02	00	00	100	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the industrial drawing.
- learn a machining and welding symbols.
- know the part and assembly drawings.
- know an application of screw threads, screw fasteners, welding and riveted joints.

List of Practical:

Sr	Name of Practical	Hours
No		
1.	Sheet of Machining Symbols and Surface Textures	03
2.	Sheet of Types of Screw Threads	03
3.	Drafting Exercise of Types of Nuts and Bolts	04
4.	Sheet of Types of Keys, Cotter and Knuckle Joint	04
5.	Sheet of Types of Riveted Joints, Welding Joints and Welding Symbols	02
6.	Sheet of Plummer Block or Pedestal Bearing	02
7.	Drafting Exercise of Part in Drafting software	12
8.	Parts designing using software tools	10
9.	Study of force analysis using software	13
10.	Assembly and disassembly of parts	07
	TOTAL	60

Text Book(s):

Title	Author/s	Publication
Machine Drawing	N. D. Bhatt, V. M. Panchal	Charotar Publishing House Pvt. Ltd.
Machine Drawing	N. Sidheshwar, P. Kannaiah, V. V. S. Sastry	Tata McGraw Hill Publication

Web Material Links:

• http://nptel.ac.in/syllabus/112106075/

Course Evaluation:

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2241	MACHINE DRAWING
C01	Illuminate machining and welding symbols and its representation in the industrial
	drawings.
CO2	Interpret and differentiate part and assembly drawing.
CO3	Explore various types of screw threads, screw fasteners, welding, riveted and pin
	joints and its applications.
C04	Understand limit, fits and tolerance systems and its representation in drawings.
C05	Discover the drafting software to create 2D and 3D geometry.

Mapping of CO with PO

SEME2241	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	3	3	2		3				3		3
CO 2	2	3	3	3		3				3		3
CO 3	2	3	3	3		3						3
CO 4	2	3	3	3		3		3		3		3
CO 5	2	3	3	3	3	3	1			3		3

Mapping of CO with PSO

SEME2241	PSO1	PSO2	PSO3
CO 1	3	2	1
CO 2	3	2	
CO 3	2	2	
CO 4	2	2	
CO 5	3	2	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Sheet of Machining Symbols and Surface Textures	1, 2,3
2	Sheet of Types of Screw Threads	1, 2, 3
3	Drafting Exercise of Types of Nuts and Bolts	1, 2, 3,4
4	Sheet of Types of Keys, Cotter and Knuckle Joint	1, 2,3,4
5	Sheet of Types of Riveted Joints, Welding Joints and Welding Symbols	1,2,3,4
6	Sheet of Plummer Block or Pedestal Bearing	1,2,3,4
7	Drafting Exercise of Part in Drafting software	1,2,3,4,5
8	Parts designing using software tools	1,2,3,4,5,6
9	Study of force analysis using software	1,2,3,4,5
10	Assembly and disassembly of parts	1,2,3,4

Department of Mechanical Engineering

Course Code: SEME2250 Course Name: Fluid Mechanics Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exar	ninatior	Scheme	(Marks)		
Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic fundamentals of Fluid Mechanics, which is used in the applications of Aerodynamics, Hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I				
Module	Content	Hours	Weightage		
No.			in %		
	Properties of Fluids				
1.	Density, Viscosity, Surface Tension, Compressibility, Capillary,	02	5		
	Vapour Pressure, Bulk Modulus, Cavitation, Classification of Fluids				
	Fluid Statics				
	Force and Pressure, Pascal's law of Pressure at a point, Pressure				
	measurement by Manometers – U tube, Inclined U tube and				
	Differential, Centre of Pressure, Hydrostatic forces on surface -				
2.	Vertical, Horizontal and Inclined, Forces on curved Surfaces,	06	14		
	Buoyancy and Buoyant Force, Centre of Buoyancy and Meta Centre,				
	Determination of Metacentric Height, Stability of Floating and				
	Submerged Body, Position of metacenter relative to Centre of				
	buoyancy.				
	Fluid Kinematics				
3.	Steady and Unsteady Flow, One – two and three DimensionalFlow,				

	Uniform and Non Uniform Flow, Rotational and Irrotational Flow,		
	Stream Lines and Stream Function, Velocity Potential Function,	07	16
	Relation between stream and velocity potential function, Flow nets,		
	Continuity Equation for 2D and 3D flow in Cartesian co-ordinates		
	system		
	Fluid Dynamics		
	Newton's law of motion, Euler's Equation and its applications,		
4.	Bernoulli's Equation and its applications, Momentum Equation,Pitot	06	15
	Tube, Determination of volumetric flow with pitot tube, Principle of		
	Venturimeter, Pipe Orifice and Rotameter.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Dimensional Analysis		
5.	Dimensions, Dimensional Homogeneity, Raleigh and Buckingham π	05	10
	Theorem, Non-Dimensional Numbers, Similarities – Geometrical,		
	Kinematics and Dynamic.		
	Flow Through Pipes & Open Channels		
	Major and Minor Losses in Pipes, Losses in Pipe Fittings, Hydraulic		
	Gradient line and Total energy line, Equivalent Pipes, Pipes in series		
6.	and parallel, Siphon, Power transmission through pipe, Moody's	07	16
	Diagram, Dracy Weishbach Equation, Types of open channel flow,		
	Specific Energy and Specific Force, Critical Flow, Hydraulic Jump,		
	Measurement of Discharge in open Channels.		
	Viscous Flow		
	Reynolds number and Reynolds experiment, flow of viscous fluid		
7.	through circular pipe- Hagen Poiseuille formula, Flow of viscous fluid	04	08
	between two parallel fixed plates, power absorbed in viscous flow		
	through - journal, foot step and collar bearing, measurement of		
	viscosity.		
<u> </u>	Boundary Layer Theory		
8.	Concept of Boundary Layer, Boundary layer Thickness, Momentum	04	08
-	Thickness, Displacement Thickness, Drag and Lift, Separation of		
	Boundary layer. Streamlined and Bluffed Bodies.		
	Nano Fluids		
	Introduction to nanofluids, nanostructure materials, base fluids		
	dispersion sonication and stable suspension Various types of	04	08
9	nanofluids-volumetric concentration. Thermonhysical properties:	01	00
	Density: principles of measurement and apparatus Theoretical		
	equations to determine the density of different panefluids. Viscosity		
	nrinciples of measurement and apparatus Andrado's and other		
	theoretical equations. Effect of volumetric concentration and		
	meoreucal equations. Effect of volumetric concentration and		

temperature. Effect of subzero temperature on nanofluid viscosity.		
TOTAL	45	100

List of Practical:

Sr No	Name of Practical	Hours
1.	Determine metacentric height of floating body.	02
2.	Measurement of pressure using different types of manometers.	02
3.	Determine Co-efficient of Discharge by venturimeter, Orificemeter and	06
	Rotameter.	
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	
6.	Measurement of Friction factor for Different pipes.	
7.	Measurement of viscosity using Redwood Viscometer.	
8.	Determine discharge through triangular notch.	
9.	Determine discharge through trapezoidal notch.	
10.	Determine discharge through rectangular notch.	
11.	Determine different flow patterns by Reynolds's apparatus.	
12.	Determine friction loss for different pipes fittings	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Textbook of Fluid Mechanics and Hydraulic	R. K. Bansal	Laxmi Publications
Machines		
Introduction to Fluid Mechanics and Fluid	S.K.Som &	Tata McGraw Hill
Machines	Biswas.G	Publication

Reference Book(s):

Title	Author/s	Publication		
Fluid Mechanics	Frank M. White	Tata McGraw Hill Publication		
Fluid Mechanics	R.K.Rajput	Schand Publication		

Web Material Links:

• http://nptel.ac.in/courses/112105171/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.

• End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2250	FLUID MECHANICS
CO 1	Differentiate fluid properties and its behavior in static and dynamic mode.
CO 2	Apply dimensional analysis to design the system and interpret types of fluid flow.
CO 3	Determine major and minor losses through different pipes.
CO 4	Diagnose the viscosity of fluids.
CO 5	Diagnose pressure exerted by the fluids and rate of flow of fluids.

Mapping of CO with PO

SEME2250	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2			2					3			
CO 2	3	2	2	3					3			
CO 3	3	2		3					3			
CO 4	3	3		3					3			
CO 5	3	1		3					3			

Mapping of CO with PSO

SEME2250	PSO1	PSO2	PSO3
CO 1		2	
CO 2	3	3	
CO 3	3	3	
CO 4	3	3	
CO 5		2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of Fluids	1, 2
2	Fluid Statics	1, 2, 5
3	Fluid Kinematics	1, 2, 5

4	Fluid Dynamics	2, 3, 4, 5
5	Dimensional Analysis	2, 3, 5
6	Flow Through Pipes & Open Channels	2, 3, 4, 5
7	Viscous Flow	2, 3, 4, 5
8	Boundary Layer Theory	2, 3, 4, 5
9	Nano Fluids	1, 2, 3, 4

Department of Mechanical Engineering

Course Code: SEME2260 Course Name: Mechanical Measurement & Metrology Prerequisite Course(s): -- None

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exar	ninatior	n Scheme	e (Marks)		
Theory	Practical	Tutorial	Credit	Theory		Theory Practical		Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- know various types and methods of measurement.
- assess the suitability of measuring instruments.
- describe the basic concepts of metrology.
- know how to operate different types of mechanical measuring instruments.
- explain the different instruments used in industry.
- evaluate quality of surface produced using various methods of measurements.

	Section I					
Module	Content	Hours	Weightage			
No.			in %			
	Principles of Metrology					
1.	Concept of Metrology, Need for inspection, Linearity,	02	05			
	Repeatability, Sensitivity and readability, Precision &					
	Accuracy, Standards of measurements.					
	Screw threads and gear Metrology					
	Measurement of Screw thread: Screw terminology, Errors in threads,					
	measuring elements of the internal and external threads.					
2.	Measurement of Gear: Introduction and Classification of gears,Forms	08	15			
	of gear teeth, Gear tooth terminology, Measurement and testing of					
	spur gear: Various methods of measuring tooth thickness, tooth					
	profile and pitch, Gear Errors.					
	Surface Roughness Metrology					
3.	Introduction, Surface Texture, Methods of Measuring Surface finish,	04	09			

	Comparison Methods and Direct Instrument Measurement,		
	Sample Length, Numerical Evaluation of Surface Texture, Indication		
	of Surface roughness Symbols used, Adverse effects of poor		
	surface finish		
	Straightness, Flatness, Squareness, Parallelism and Machine		
	Tool Tests		
	Introduction, Measurement of Straightness, Flatness, Squareness and		
4.	Parallelism, run out and concentricity, Tool makers microscope,	05	12
	Interferometry and its use in checking flatness, surface contour,		
	parallelism etc., Interferometers andoptical flats, Introduction to		
	Machine tool testing; Various Alignment test on lathe, Milling		
	Machine, Drilling Machine etc.		
	Miscellaneous Metrology		
5.	Measurement of Force, Torque, Power, Measurement of	04	09
	displacement, Velocity and Acceleration, Measurement ofSpeed		
	and Frequency		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Measurement Concept		
	Economics of measurement, Need of mechanical measurement,		
	Basic definitions: Hysteresis, Linearity, Resolution of measuring		
6.	instruments, Threshold, Drift, Zero stability, loading effect and	04	09
	system response. Source of Errors and their classification. Methods		
	of measurement and performance characteristics		
	Linear Measurements		
	Precision and Non-precision linear Measurements, Vernier caliper,		
7.	Micrometer, Use of End standard – Slip Gauge, Indian standard on	06	14
	Slip gauge, Care and use of slip gauge for workshop and inspection		
	purpose, Telescopic gauge, Comparators.		
	Angular and Taper Measurements		
	Introduction; Working principle and construction of Angular		
8.	Measuring instruments like Protractors, Sine bars, Sine Centre, Angle	04	09
	gauges, Spirit level, Clinometers, Angle dekkor, Taper Measuring		
	Instruments: Measurement of taper shafts and Holes		
	Temperature measurement		
	Temperature scales, Temperature measuring devices. Methods of		
9.	Temperature Measurement, Expansion Thermometers: Filled System	04	09
	thermometers; Electrical Temperature Measuring Instrument.	-	
	Pyrometers; Calibration of Temperature Measuring Instruments.		
	Reliability and calibration.		

	Inspection Technologies		
10.	History of Coordinate Measuring Machines, Important feature of	04	09
	CMM, CMM construction, CMM Operation and Programming,		
	Performance of CMM, Possible causes of errors in CMM, Trigger type		
	and Measuring type probes in computer controlled CMM, Accuracy		
	Specification for CMM, Calibration of CMM, CMM Applications and		
	Benefits, Role of computer in field of Metrology, Advances in		
	Metrology.		
	TOTAL	45	100

List of Practical:

Sr No	Name of Practical	Hours
1.	Study of various instrument characteristics	02
2.	Study, Use and calibration of Linear Measuring Instruments	08
3.	Study and use of slip gauge	02
4.	Study of angle measurement using (a) Bevel Protractor (b) Combination	08
	Set and (c) Sine Bar	
5.	Study of Temperature Measurement	02
6.	Study of Surface Roughness Tester	02
7.	Study of Gear Tooth Measurement	02
8.	Study Strain gauge Transducer	04
9.	Study of Coordinate Measuring Machines (CMM) (Industrial Visit)	-
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Textbook Of Metrology	M. Mahajan	Dhanpat rai & Co.
Mechanical Measurements & Control	D. S. Kumar	Metropolitan books co pvt ltd

Reference Book(s):

Title	Author/s	Publication	
Mechanical Measurement and	R K Jain	Khanna Publisher	
Metrology			
Mechanical Measurements	R K Rajput	Kataria Publication	
and Instrumentations			
Mechanical Measurements	Beckwith & Buck	Narosa publishing	
		House	
Metrology and Measurement	Anand Bewoor & Vinay Kulkarni	McGraw-Hill	

Web Material Links:

• http://nptel.ac.in/courses/112106179

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2260	MECHANICAL MEASUREMENT & METROLOGY			
CO 1	Select linear and angular measuring instrument for measurement of various			
	components			
CO 2	Distinguish between various gears and screws by measuring their dimensions			
CO 3	Measure surface finish of the component produced			
CO 4	Compare appropriate temperature measuring device for various applications			
CO 5	Describe methods of measurement for various quantities like force, torque, power,			
	displacement.			

Mapping of CO with PO

SEME2260	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2				1						2	
CO 2	2				3		3					2
CO 3	2				2		3		2			2
CO 4	2				3		3	1	2			2
CO 5	2				3		3	1	2			2

Mapping of CO with PSO

SEME2260	PSO1	PSO2	PSO3
CO 1	1	1	1
CO 2	3	2	2
CO 3	3	2	2
CO 4	3	2	2
CO 5	3	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of Metrology	1,2, 3
2	Screw threads and gear Metrology	2, 4, 5
3	Surface Roughness Metrology	2,4,5
4	Straightness, Flatness, Squareness, Parallelism and Machine Tool Tests	2, 4, 5
5	Miscellaneous Metrology	2, 3, 4, 5
6	Measurement Concept	2, 4, 5
7	Linear Measurements	2, 5
8	Angular and Taper Measurements	2, 5
9	Temperature Measurement	2, 5
10	Inspection Technologies	2, 3, 4, 5

Department of Mechanical Engineering

Course Code: SEME2270 Course Name: Theory of Machines Prerequisite Course(s): SECV1030-Engineering Mechanics

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exar	ninatio	n Scheme	(Marks)		
Theory	Practical	Tutorial	Credit	The	ory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
03	02	-	04	40	60	40	60	-	-	200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the leaners to learn:

- basics types of mechanism, degree of freedom, joints.
- about velocity and acceleration analysis for different mechanism.
- about kinematic analysis of cam and follower motion.
- about types of belts, ropes, chain and gears drives and its applications.

Section I					
Module	Content	Hours	Weightage		
No.			in %		
1.	Basics of Mechanisms Introduction, Mechanism and machine, Rigid and resistant body, Link, Kinematic pair, Types of motion, Degrees of freedom (mobility), Classification of kinematic pairs, Kinematic chain, Linkage, Mechanisms, Kinematic inversion, Inversions of slider crank chain, Synthesis of Mechanism, Double slider- crank chain, Quick return	06	10		
2.	Velocity Analysis Vectors, Displacement of a rigid body, Relative displacement, Definition of velocity, Angular velocity, Rotation of a rigid body, Translation and rotation of a rigid body, Relative velocity method (graphical and analytical), Instantaneous axes of motion, Properties of instantaneous centers, The Aronhold - Kennedy theorem of three centers, Velocity analysis by instantaneous centers. The line-of- centers method, Velocity analysis by components, Velocity images, Velocity diagrams.	12	20		

	Acceleration Analysis		
	Definition of acceleration, Angular acceleration, A general case of		
3.	acceleration, Radial and transverse components ofacceleration, The	12	20
	coriolis component of acceleration, Examples		
	of acceleration analysis, Acceleration diagrams.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Kinematics of Belts, Ropes and Chain Drives		
	Introduction, Belt and rope drives, Open and crossed belt drives,		
	Velocity ratio, Slip, Materials for belt and ropes, Law of belting, Length		
4.	of belt, Ratio of friction tensions, Power transmitted, Centrifugal	07	10
	effect on belts, Maximum power transmitted by a belt, Initial tension,		
	Creep, Chains, Chain length, Angular speed ratio, Classification of		
	chains.		
	Kinematics of Gears		
	Introduction, Classification of gears, Gear terminology, Law of		
	gearing, Velocity of sliding, Forms of teeth, Cycloidal profile teeth,		
	Involute profile Teeth, Comparison of Cycloidal and involute tooth		
5.	forms, Path of contact, Arc of contact, number ofpairs of teeth in	15	20
	contact, Interference in involute gears, Minimum number of teeth,		
	Interference between rack and pinion, Undercutting, Introduction to		
	helical, Spiral, Worm, Worm gear and bevel gears.		
	Kinematics of Cams		
6.	Introduction, Types of cams, Types of followers, Cam terminology,	08	20
	Displacement diagrams, Motions of the follower, Graphical		
	construction of cam profile, High Speed CAM.		
	TOTAL	60	100

List of Practical:

Sr No	Name of Practical	Hours
1.	To measure the ratio of time of cutting stroke to the return stroke in shaping	02
	machine by varying the stroke length.	
2.	To understand the ratio of time of cutting stroke to the return stroke in shaper	08
	machine by varying the stroke length.	
3.	To estimate kinematic data related to bicycle free wheel sprocket mechanism and	02
	Geneva mechanism.	
4.	To prepare different kinematic links and to determine velocity and acceleration	08
	by relative velocity method for analysis of motion links.	
5.	To draw a radial cam profile for given follower type to obtain desired follower	02
	motion.	
6.	To estimate the slip, length of belt, angle of contact in open and cross belt drive.	02

7.	To assemble and dismantle different clutches.	02
8.	To measure radius and height of all types of governors for different rotational	04
	speeds and mass of balls.	
9.	To perform balancing of rotating unbalanced system.	-
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Theory of Machines	S. S. Rattan	Tata McGraw Hill Education
Theory of Machines and	John J. Uicker, Gordon R.	Oxford University Press
Mechanisms	Pennock, Joseph E. Shigley	

Reference Book(s):

Title	Author/s	Publication
Mechanism and Machine Theory	J.S Rao, R.V Dukkipati	Wiley Eastern Ltd.
Theory of Mechanism and Machine	Ghosh A., Malick A.K	East-West Pvt. Ltd.

Web Material Links:

• http://nptel.ac.in/courses/112104121/1

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/drawing/test consists of 30 marks during End Semester Exam.
- Viva/Oral performance consists of 30 marks during the End Semester Exam.

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEME2270	KINEMATICS OF MACHINERY
CO 1	Understand the essential components of linkage and mechanism in the assembly of
	machines.
CO 2	Analyze the assembly with respect to the displacement, velocity, and acceleration at
	any point in a link of a mechanism.
CO 3	Apply the concept of the belt, rope, chains, and gear drives in machines operations.

CO 4	Understand a power transmission machine's element and its mechanism to solve			
	problems associated with it.			
CO 5	Design a layout of cam and follower for specific motion.			

Mapping of CO with PO

SEME2270	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	1	1										
CO 2	1	1		1	1							
CO 3	1	1			1							
CO 4	1	1		1								
CO 5	1	1		1	1							

Mapping of CO with PSO

SEME2270	PSO1	PSO2	PSO3
CO 1	3	2	
CO 2	3	3	1
CO 3	3	3	2
CO 4	3	2	1
CO 5	3	3	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level	
1	Basics of Mechanisms	1, 2	
2	Velocity Analysis	1, 2, 3, 5	
3	Acceleration Analysis	1, 2, 3, 5	
4	Kinematics of Belts, Ropes and Chain Drives	2, 5	
5	Kinematics of Gears	2, 5	
6	Kinematics of Cams	2, 5	